Synthesis of ZrN-Based Composites via Nitridation of Zircon + Aluminum Mixtures in Combustion Mode
- Authors: Kryukova O.G.1, Krylova T.A.2
-
Affiliations:
- Tomsk Scientific Center, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia
- Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia
- Issue: Vol 59, No 4 (2023)
- Pages: 432-437
- Section: Articles
- URL: https://medjrf.com/0002-337X/article/view/668278
- DOI: https://doi.org/10.31857/S0002337X23040048
- EDN: https://elibrary.ru/GMHDNA
- ID: 668278
Cite item
Abstract
Self-propagating high-temperature synthesis has been used to nitride zircon with aluminum additions (5–30%). We have examined the influence of the key process parameters (composition of the starting mixture, gas pressure, and sample diameter) on the combustion speed, nitrogen content, and phase composition of the synthesis products and found critical parameters at which combustion was impossible: less than 20% aluminum, nitrogen pressure under 2 MPa, and sample diameter less than 35 mm. The addition of 20–30% aluminum has been shown to change the phase composition of the synthesis products. On the addition of 20–25% Al, the phase composition was ZrN, Al2O3, Si3Al3O3N5, ZrO2, and ZrSi2; at 30% Al, it was ZrN, Al2O3, ZrSi2, Al3O3N5. The combustion products have been shown to contain aluminum oxynitride (Al3O3N5) forming from the gas phase. We have identified the mechanism underlying nitridation of a ZrSiO4 + Al mixture in combustion mode. A composite powder with the composition ZrN–Al2O3–ZrSi2–Al3O3N was tested as a material for producing coatings by nonvacuum electron-beam cladding.
About the authors
O. G. Kryukova
Tomsk Scientific Center, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia
Email: o.krjukova@hq.tsc.ru
Россия, 634055, Томск, Академический пр., 10/4
T. A. Krylova
Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia
Author for correspondence.
Email: o.krjukova@hq.tsc.ru
Россия, 634055, Томск, Академический пр., 2/4
References
- Ковалёв И.А., Шокодько А.В., Огарков А.И., Шевцов С.В., Коновалов А.А., Канныкин С.В., Ашмарин А.А., Коломиец Т.Ю., Чернявский А.С., Солнцев К.А. Фазовые превращения в приповерхностном слое компактной керамики на основе нитрида циркония // Неорган. материалы. 2019. Т. 55. № 7. С. 769–774. https://doi.org/10.1134/S0002337X1907008X
- Patsalas P. Zirconium Nitride: A Viable Candidate for Photonics and Plasmonics? // Thin Solid Films. 2019. V. 688. P. 137438. https://doi.org/10.1016/j.tsf.2019.137438
- Xuan C.J., Zhao Z., Jönsson P.G. Wettability and Corrosion of Spark Plasma Sintered (SPS) ZrN by Liquid Iron and Steel // J. Eur. Ceram. Soc. 2016. V. 36. № 10. P. 2435–2442. https://doi.org/10.1016/j.jeurceramsoc.2016.03.006
- Kameneva A., Kichigin V. Corrosion, Wear, and Friction Behavior of a Number of Multilayer Two-, Three- and Multicomponent Nitride Coatings on Different Substrates, Depending on the Phase and Elemental Composition Gradient // Appl. Surf. Sci. 2019. V. 489. P. 165–174. https://doi.org/10.1016/j.apsusc.2019.05.331
- Ul-Hamid A. Microstructure, Properties and Applications of Zr–Carbide, Zr–Nitride and Zr–Carbonitride Coatings: a Review // Adv. Mater. 2020. № 5. P. 1012–1037. https://doi.org/10.1039/D0MA00233J
- Lopez G., Staia M.H. High-Temperature Tribological Characterization of Zirconium Nitride Coatings // Surf. Coat. Technol. 2005. V. 200. № 7. P. 2092–2099. https://doi.org/10.1016/J.SURFCOAT.2004.08.221
- Singh A., Kumar N., Kuppusami P., Prasanthi T.N., Chandramohan P., Dash S., Srinivasan M.P., Mohandas E., Tyagi A.K. Tribological Properties of Sputter Deposited ZrN Coatings on Titanium Modified Austenitic Stainless Steel // Wear. 2012. V. 280–281. P. 22–27. https://doi.org/10.1016/j.wear.2012.01.013
- Sugunakar Reddy R., Kamaraj M., Kamachi Mudali U., Chakravarthy S.R., Sarathi R. Generation and Characterization of Zirconium Nitride Nanoparticles by Wire Explosion Process // Ceram. Int. 2012. V. 38. № 7. P. 5507–5512. https://doi.org/10.1016/j.ceramint.2012.03.065
- Шевцов С.В., Огарков А.И., Ковалев И.А., Кузнецов К.Б., Просвирнин Д.В., Ашмарин А.А., Чернявский А.С., Солнцев К.А. Структурно-фазовые превращения и твердость керамики, получаемой в процессе высокотемпературной нитридизации циркония // Журн. неорган. химии. 2016. Т. 61. № 12. С. 1635–1639. https://doi.org/10.7868/S0044457X16120163
- Zhao S., Ma J., Xu R., Lin X., Cheng X., Hao S., Zhao X., Deng C., Liu B. Synthesis and Characterization of Zirconium Nitride Nanopowders by Internal Gelation and Carbothermic Nitridation // Sci. Rep. 2019. № 9. P. 19199. https://doi.org/10.1038/s41598-019-55450-x
- Zhao S., Song J., Xu R., Nie L., Ma J., Deng C., Cheng X., Zhao X., Hao S., Li J. Fabrication of Zirconium Nitride Nanopowder with a High Specific Surface // Ceram. Int. 2021. V. 47. № 16. P. 23267–23274. https://doi.org/10.1016/j.ceramint.2021.05.039
- Maksimov Yu.M., Avramchik A.N., Braverman B.Sh., Shulpekov A.M. Combustion of Thermite TiO2/ZrO2–Ca Mixtures in Nitrogen Gas // Int. J. Self-Propag. High-Temp. Synth. 2020. V. 29. № 1. P. 31–35. https://doi.org/10.3103/S1061386220010069
- Yin L., Jones M. Synthesis of ZrN Powders by Aluminum-Reduction Nitridation of ZrO2 Powders with CaCO3 Additive // Ceram. Int. 2017. V. 43. № 3. P. 3183–3189. https://doi.org/10.1016/j.ceramint.2016.11.140
- Chen Y., Deng C., Yu C., Ding J., Zhu H. Molten-Salt Nitridation Synthesis of Cubic ZrN Nanopowders at Low Temperature via Magnesium Thermal Reduction // Ceram. Int. 2018. V. 44. № 7. P. 8710–8715. https://doi.org/10.1016/j.ceramint.2018.02.019
- Закоржевский В.В., Лорян В.Э., Боровинская И.П., Кириллов А.В., Санникова С.Н. Самораспространяющийся высокотемпературный синтез нитрида циркония из элементов // Новые огнеупоры. 2016. № 9. С. 56–58. https://doi.org/10.17073/1683-4518-2016-9-56-58
- Zaki Z.I., Alotaibi S.H., Alhejji B.A., Mostafa N.Y., Amin M.A., Qhatani M.M. Combustion Synthesis of High Density ZrN/ZrSi2 Composite: Influence of ZrO2 Addition on the Microstructure and Mechanical Properties // Materials. 2022. № 15. P. 1698. https://doi.org/10.3390/ma15051698
- Wu X., Li J., Yang Z., Liu G. Combustion Synthesis of ZrN and AlN Using Si3N4 and BN as Solid Nitrogen Sources // Ceram. Int. 2018. V. 44. № 10. P. 11914–11917. https://doi.org/10.1016/j.ceramint.2018.03.200
- Витушкина О.Г., Чухломина Л.Н., Верещагин В.И. Получение керамической композиции Si3N4–ZrO2 методом самораспространяющегося высокотемпературного синтеза // Новые огнеупоры. 2011. № 11. С. 37–39.
- Kryukova O.G., Bolgaru K.A., Avramchik A.N. Combustion of Ferrosilicon–Zircon Mixtures in Nitrogen Gas: Impact of Aluminum Additives // Int. J. Self-Propag. High-Temp. Synth. 2021. V. 30. № 4. P. 236–240. https://doi.org/10.3103/S1061386221040051
- Yeh C.L., Liou G.T. Aluminothermic Reduction of ZrSiO4 in the Presence of Carbon for in Situ Formation of Zr-Based Silicides/Carbides Composites // J. Alloys Compd. 2019. V. 775. P. 360–365. https://doi.org/10.1016/j.jallcom.2018.10.130
- Yeh C.L., Wang Y.H. Preparation of ZrB2–SiC–Al2O3 Composites by SHS Method with Aluminothermic Reduction // Ceram. Int. 2021. V. 47. № 8. P. 11202–11208. https://doi.org/10.1016/j.ceramint.2020.12.245
- Мансуров З.А., Фоменко С.М., Алипбаев А.Н., Абдулкаримова Р.Г., Зарко В.Е. Особенности алюминотермического горения систем на основе оксида хрома в условиях высокого давления азота // Физика горения и взрыва. 2016. Т. 52. № 2. С. 67–75. https://doi.org/10.15372/FGV20160208
- Полетика И.М., Голковский М.Г., Крылова Т.А., Перовская М.В. Структура и свойства хромсодержащих покрытий, полученных методом электронно-лучевой наплавки в атмосфере // Металловедение и термическая обработка металлов. 2009. № 3 (645). С. 15–22.
- Ткаченко А.В., Косолапова Т.Я. Условия получения силицидов циркония // Порошковая металлургия. 1968. Т. 63. № 3. С. 23–27.
- Gromov A.A., Chukhlomina L.N. Nitride Ceramics. Combustion Synthesis, Properties, and Applications. Weinheim: Wiley, 2015. 331 p. https://doi.org/10.1002/9783527684533
