Technological Features of the Preparation of Zinc Ferrite Using a Sol–Gel Process
- Authors: Shabel’skaya N.P.1,2, Egorova M.A.1, Radzhabov A.M.1, Ul’yanova V.A.1, Gaidukova Y.A.1
-
Affiliations:
- Platov State Polytechnic University, 346428, Novocherkassk, Rostov oblast, Russia
- Southern Federal University, 344006, Rostov-on-Don, Russia
- Issue: Vol 59, No 3 (2023)
- Pages: 260-265
- Section: Articles
- URL: https://medjrf.com/0002-337X/article/view/668296
- DOI: https://doi.org/10.31857/S0002337X23030119
- EDN: https://elibrary.ru/YSVJLQ
- ID: 668296
Cite item
Abstract
We have studied the formation of the structure of zinc ferrite using sol–gel synthesis in the presence of a number of organic templates: polyacrylamide, citric acid, sucrose, and urea. The synthesized materials were characterized by X-ray diffraction and electron microscopy, and we estimated the crystallite size by the Scherrer method. The results demonstrate that the formation of the spinel structure is most complete if polyacrylamide or citric acid is used as an organic template. In the case of citric acid, we obtained materials with the smallest crystallite size. The samples obtained in the presence of sucrose or urea were not single-phase. We carried out thermodynamic assessment of the processes in question. The results of this study make it possible to knowingly choose an organic precursor for the synthesis of microcrystalline spinel ferrites.
Keywords
About the authors
N. P. Shabel’skaya
Platov State Polytechnic University, 346428, Novocherkassk, Rostov oblast, Russia; Southern Federal University, 344006, Rostov-on-Don, Russia
Email: nina_shabelskaya@mail.ru
Россия, 346428, Ростовская обл., Новочеркасск,
ул. Просвещения, 132; Россия, 344006, Ростов-на-Дону, ул. Б. Садовая, 105/42
M. A. Egorova
Platov State Polytechnic University, 346428, Novocherkassk, Rostov oblast, Russia
Email: nina_shabelskaya@mail.ru
Россия, 346428, Ростовская обл., Новочеркасск,
ул. Просвещения, 132
A. M. Radzhabov
Platov State Polytechnic University, 346428, Novocherkassk, Rostov oblast, Russia
Email: nina_shabelskaya@mail.ru
Россия, 346428, Ростовская обл., Новочеркасск,
ул. Просвещения, 132
V. A. Ul’yanova
Platov State Polytechnic University, 346428, Novocherkassk, Rostov oblast, Russia
Email: nina_shabelskaya@mail.ru
Россия, 346428, Ростовская обл., Новочеркасск,
ул. Просвещения, 132
Yu. A. Gaidukova
Platov State Polytechnic University, 346428, Novocherkassk, Rostov oblast, Russia
Author for correspondence.
Email: nina_shabelskaya@mail.ru
Россия, 346428, Ростовская обл., Новочеркасск,
ул. Просвещения, 132
References
- Smolii V.A., Kosarev A.S., Yatsenko E.A., Gol’tsman B.N. Structure Formation in Cellular Glass Based on Novocherkassk CHPP Ash-Slag Wastes // Glass Ceram. 2018. V. 75. P. 303–307. https://doi.org/10.1007/s10717-018-0075-9
- Yatsenko E.A., Zubekhin A.P., Klimenko E.B. Electrochemical Methods for Improving the Strength of Adhesion of One-Coat Glass Enamels to Substrate // Glass Ceram. 2004. V. 61. P. 90–93. https://doi.org/10.1023/B:GLAC.0000034055.17814.11
- Tomina E.V., Pavlenko A.A., Kurkin N.A. Synthesis of Bismuth Ferrite Nanopowder Doped with Erbium Ions // Condens. Mater. Interphases. 2021. V. 23. № 1. P. 93–100. https://doi.org/10.17308/kcmf.2021.23/3309
- Mittova I.Ya., Sladkopevtsev B.V., Mittova V.O., Nguyen A.T., Kopeichenko E.I., Khoroshikh N.V., Varnachkina I.A. Formation of Nanoscale Films of the (Y2O3–Fe2O3) on the Monocrystal InP // Condens. Mater. Interphases. 2019. V. 21. № 3. P. 406–418. https://doi.org/10.17308/kcmf.2019.21/1156
- Копейченко Е.И., Миттова И.Я., Перов Н.С., Нгуен А.Т., Миттова В.О., Алехина Ю.А., Фам В. Синтез, состав и магнитные свойства нанопорошков феррита лантана, допированного кадмием // Неорган. материалы. 2021. Т. 57. № 4. С. 388–392. https://doi.org/10.31857/S0002337X21040072
- Винник Д.А., Гудкова С.А., Живулин В.Е., Трофимов Е.А. Типы структур, получение, свойства, перспективы применения твердых растворов на основе ферритов // Неорган. материалы. 2021. Т. 57. № 11. С. 1174–1184. https://doi.org/10.31857/S0002337X21110130
- Ghasemi A.K., Ghorbani M., Lashkenari M.S., Nasiri N. Controllable Synthesis of Zinc Ferrite Nanostructure with Tunable Morphology on Polyaniline Nanocomposite for Supercapacitor Application // J. Energy Storage. 2022. V. 51. P. 104579. https://doi.org/10.1016/j.est.2022.104579
- Hajlaoui M.E., Gharbi S., Dhahri E., Khirouni K. Impedance Spectroscopy and Giant Permittivity Study of ZnFe2O4 Spinel Ferrite as a Function of Frequency and Temperature // J. Alloys Compd. 2022. V. 90615. P. 164361. https://doi.org/10.1016/j.jallcom.2022.164361
- Fang Y., Liang Q., Li Y., Luo H. Surface Oxygen Vacancies and Carbon Dopant Co-Decorated Magnetic ZnFe2O4 as Photo-Fenton Catalyst towards Efficient Degradation of Tetracycline Hydrochloride // Chemosphere. 2022. V. 302. P. 134832. https://doi.org/10.1016/j.chemosphere.2022.134832
- Luo J., Wu Y., Chen X., He T., Zeng Y., Wang G., Wang Y., Zhao Y. Chen Z. Synergistic Adsorption-Photocatalytic Activity Using Z-Scheme Based Magnetic ZnFe2O4/CuWO4 Heterojunction for Tetracycline Removal // J. Alloys Compd. 2022. V. 91025. P. 164954. https://doi.org/10.1016/j.jallcom.2022.164954
- Корнейков Р.И., Иваненко В.И., Аксенова С.В. Ионообменное извлечение из растворов катионов Zn2+, Co2+ и Ni2+ фосфатотитановыми матрицами // Неорган. материалы. 2022. Т. 58. № 3. С. 297–301. https://doi.org/10.31857/S0002337X22030071
- Корнейков Р.И., Иваненко В.И., Аксенова С.В. Процессы сорбции/десорбции катионов Cu2+ и Ni2+ на аморфных фосфатотитановых сорбентах // Неорган. материалы 2022. Т. 58. № 2. С. 150–154. https://doi.org/10.31857/S0002337X22020075
- Zhao X., Baharinikoo L., Farahani M.D., Mahdizadeh B., Farizhandi A.A.K. Experimental Modelling Studies on the Removal of Dyes and Heavy Metal Ions Using ZnFe2O4 Nanoparticles // Sci. Rep. 2022. V. 12. № 1. P. 5987. https://doi.org/10.1038/s41598-022-10036-y
- Amin A.M.M., Rayan D.A., Ahmed Y.M.Z., El-Shall M.S., Abdelbasir S.M. Zinc Ferrite Nanoparticles from Industrial Waste for Se(IV) Elimination from Wastewater // J. Environ. Manage. 2022. V. 31215. P. 114956. https://doi.org/10.1016/j.jenvman.2022.114956
- Wu X., Lu J., Huang S., Shen X., Cui S., Chen X. Facile Fabrication of Novel Magnetic 3-D ZnFe2O4/ZnO Aerogel Based Heterojunction for Photoreduction of Cr(VI) under Visible Light: Controlled Synthesis, Facial Change Distribution, and DFT Study // Appl. Surf. Sci. 2022. V. 59430. P. 153486. https://doi.org/10.1016/j.apsusc.2022.153486
- Бузько В.Ю., Шамрай И.И., Рябова М.Ю., Киреева Г.В., Горячко А.И. Свойства наноразмерного никель-цинкового феррита, полученного различными методами // Неорган. материалы. 2021. Т. 57. № 1. С. 41–46. https://doi.org/10.31857/S0002337X21010024
- Gautam J., Kannan K., Meshesha M.M., Dahal B., Subedi S., Ni L., Wei Y., Yang B.L. Heterostructure of Polyoxometalate/Zinc-Iron-Oxide Nanoplates as an Outstanding Bifunctional Electrocatalyst for the Hydrogen and Oxygen Evolution Reaction // J. Colloid Interface Sci. 2022. V. 618. P. 419–430. https://doi.org/10.1016/j.jcis.2022.03.103
- Fu Y.-Ming, Tang Y.-Bin, Shi W.-Long, Chen F.-Yan, Guo F., Hao C.-Chen Preparation of Rambutan-Shaped Hollow ZnFe2O4 Sphere Photocatalyst for the Degradation of Tetracycline by Visible-Light Photocatalytic Persulfate Activation // Mater. Chem. Phys. 2022. V. 2861. P. 126176. https://doi.org/10.1016/j.matchemphys.2022.126176
- Миттова И.Я., Перов Н.С., Алехина Ю.А., Миттова В.О., Нгуен А.Т., Копейченко Е.И., Сладкопевцев Б.В. Размер и магнитные характеристики нанокристаллов YFeO3 // Неорган. материалы. 2022. Т. 58. № 3. С. 283–289. https://doi.org/10.31857/S0002337X22030113
- Ларионов Д.С., Битанова В.А., Евдокимов П.В., Гаршев А.В., Путляев В.И. Золь–гель-синтез порошков Ca3(PO4)2 и Ca3–xNa2x(PO4)2 для формирования биокерамики методом 3D-печати // Неорган. материалы. 2022. Т. 58. № 3. С. 317–326. https://doi.org/10.31857/S0002337X22030095
- Морозова Л.В. Синтез нанокристаллических порошков в системе CеO2〈ZrO2〉–Al2O3 цитратным золь–гель-методом // Неорган. материалы. 2021. Т. 57. № 2. С. 163–172. https://doi.org/10.31857/S0002337X21020093
- Sakfali J., Ben Chaabene S., Akkari R., Said Zina M. One-Pot Sol-Gel Synthesis of Doped TiO2 Nanostructures for Photocatalytic Dye Decoloration // Russ. J. Inorg. Chem. 2022. V. 67. № 8. P. 1324–1337. doi.https://doi.org/10.1134/S003602362208023X
- Patil S.B., Naik H.S.B., Nagaraju G., Viswanath R., Rashmi S.K., Kumar M.V. Sugarcane Juice Mediated Eco-Friendly Synthesis of Visible Light Active Zinc Ferrite Nanoparticles: Application to Degradation of Mixed Dyes and Antibacterial Activities // Mater. Chem. Phys. 2018. V. 212. P. 351–362. https://doi.org/10.1016/j.matchemphys.2018.03.038
- Zhang J., Song J.-M., Niu H.-L., Mao C.-J., Zhang S.-Y., Shen Y.-H. ZnFe2O4 Nanoparticles: Synthesis, Characterization, and Enhanced Gassensing Property for Acetone // Sens. Actuators, B. 2015. V. 221. P. 55–62. https://doi.org/10.1016/j.snb.2015.06.040
- Cherif K., Rekhila G., Omeiri S., Bessekhouad., Trari M. Physical and Photoelectrochemical Properties of the Spinel ZnCr2O4 Prepared by Sol Gel Application to Orange II Degradation under Solar Light // J. Photochem. Photobiol., A: Chem. 2019. V. 368. P. 290–295. https://doi.org/10.1016/j.jphotochem.2018.10.003
- Simonenko T.L., Simonenko N.P., Simonenko E.P., Kuznetsov N.T. Features of Glycol-Citrate Synthesis of Highly Dispersed Oxide La0.6Sr0.4Co0.2Fe0.8O3–δ // Russ. J. Inorg. Chem. 2022. V. 67. № 10. P. 1495–1502. https://doi.org/10.1134/S0036023622600939
- Шабельская Н.П., Егорова М.А., Арзуманова А.В., Яковенко Е.А., Забабурин В.М., Вяльцев А.В. Получение композиционных материалов на основе феррита кобальта(II) для очистки водных растворов // Изв. вузов. Сер.: Химия и хим. технология. 2021. Т. 64. № 2. С. 95–102. https://doi.org/10.6060/ivkkt.20216402.6215
- Shabelskaya N.P., Egorova M.A., Vasileva E.V., Polozhentsev O.E. Photocatalytic Properties of Nanosized Zinc Ferrite and Zinc Chromite // Adv. Nat. Sci.: Nanosci. Nanotechnol. 2021. V. 12. № 1. P. 015004. https://doi.org/10.1088/2043-6254/abde3b
- Gagarin P.G., Gus’kov A.V., Gus’kov V.N., Kondrat’eva O.N., Nikiforova G.E., Pechkovskaya K.I., Ryumin M.A., Tyurin A.V., Khoroshilov A.V., Efimov N.N., Gavrichev K.S. Thermal, Thermodynamic, and Magnetic Properties of Europium Stannate Eu2Sn2O7 // Russ. J. Inorg. Chem. 2022. V. 67. № 11. P. 1803–1812. https://doi.org/10.1134/S0036023622601015
