Technological Features of the Preparation of Zinc Ferrite Using a Sol–Gel Process

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We have studied the formation of the structure of zinc ferrite using sol–gel synthesis in the presence of a number of organic templates: polyacrylamide, citric acid, sucrose, and urea. The synthesized materials were characterized by X-ray diffraction and electron microscopy, and we estimated the crystallite size by the Scherrer method. The results demonstrate that the formation of the spinel structure is most complete if polyacrylamide or citric acid is used as an organic template. In the case of citric acid, we obtained materials with the smallest crystallite size. The samples obtained in the presence of sucrose or urea were not single-phase. We carried out thermodynamic assessment of the processes in question. The results of this study make it possible to knowingly choose an organic precursor for the synthesis of microcrystalline spinel ferrites.

About the authors

N. P. Shabel’skaya

Platov State Polytechnic University, 346428, Novocherkassk, Rostov oblast, Russia; Southern Federal University, 344006, Rostov-on-Don, Russia

Email: nina_shabelskaya@mail.ru
Россия, 346428, Ростовская обл., Новочеркасск, ул. Просвещения, 132; Россия, 344006, Ростов-на-Дону, ул. Б. Садовая, 105/42

M. A. Egorova

Platov State Polytechnic University, 346428, Novocherkassk, Rostov oblast, Russia

Email: nina_shabelskaya@mail.ru
Россия, 346428, Ростовская обл., Новочеркасск, ул. Просвещения, 132

A. M. Radzhabov

Platov State Polytechnic University, 346428, Novocherkassk, Rostov oblast, Russia

Email: nina_shabelskaya@mail.ru
Россия, 346428, Ростовская обл., Новочеркасск, ул. Просвещения, 132

V. A. Ul’yanova

Platov State Polytechnic University, 346428, Novocherkassk, Rostov oblast, Russia

Email: nina_shabelskaya@mail.ru
Россия, 346428, Ростовская обл., Новочеркасск, ул. Просвещения, 132

Yu. A. Gaidukova

Platov State Polytechnic University, 346428, Novocherkassk, Rostov oblast, Russia

Author for correspondence.
Email: nina_shabelskaya@mail.ru
Россия, 346428, Ростовская обл., Новочеркасск, ул. Просвещения, 132

References

  1. Smolii V.A., Kosarev A.S., Yatsenko E.A., Gol’tsman B.N. Structure Formation in Cellular Glass Based on Novocherkassk CHPP Ash-Slag Wastes // Glass Ceram. 2018. V. 75. P. 303–307. https://doi.org/10.1007/s10717-018-0075-9
  2. Yatsenko E.A., Zubekhin A.P., Klimenko E.B. Electrochemical Methods for Improving the Strength of Adhesion of One-Coat Glass Enamels to Substrate // Glass Ceram. 2004. V. 61. P. 90–93. https://doi.org/10.1023/B:GLAC.0000034055.17814.11
  3. Tomina E.V., Pavlenko A.A., Kurkin N.A. Synthesis of Bismuth Ferrite Nanopowder Doped with Erbium Ions // Condens. Mater. Interphases. 2021. V. 23. № 1. P. 93–100. https://doi.org/10.17308/kcmf.2021.23/3309
  4. Mittova I.Ya., Sladkopevtsev B.V., Mittova V.O., Nguyen A.T., Kopeichenko E.I., Khoroshikh N.V., Varnachkina I.A. Formation of Nanoscale Films of the (Y2O3–Fe2O3) on the Monocrystal InP // Condens. Mater. Interphases. 2019. V. 21. № 3. P. 406–418. https://doi.org/10.17308/kcmf.2019.21/1156
  5. Копейченко Е.И., Миттова И.Я., Перов Н.С., Нгуен А.Т., Миттова В.О., Алехина Ю.А., Фам В. Синтез, состав и магнитные свойства нанопорошков феррита лантана, допированного кадмием // Неорган. материалы. 2021. Т. 57. № 4. С. 388–392. https://doi.org/10.31857/S0002337X21040072
  6. Винник Д.А., Гудкова С.А., Живулин В.Е., Трофимов Е.А. Типы структур, получение, свойства, перспективы применения твердых растворов на основе ферритов // Неорган. материалы. 2021. Т. 57. № 11. С. 1174–1184. https://doi.org/10.31857/S0002337X21110130
  7. Ghasemi A.K., Ghorbani M., Lashkenari M.S., Nasiri N. Controllable Synthesis of Zinc Ferrite Nanostructure with Tunable Morphology on Polyaniline Nanocomposite for Supercapacitor Application // J. Energy Storage. 2022. V. 51. P. 104579. https://doi.org/10.1016/j.est.2022.104579
  8. Hajlaoui M.E., Gharbi S., Dhahri E., Khirouni K. Impedance Spectroscopy and Giant Permittivity Study of ZnFe2O4 Spinel Ferrite as a Function of Frequency and Temperature // J. Alloys Compd. 2022. V. 90615. P. 164361. https://doi.org/10.1016/j.jallcom.2022.164361
  9. Fang Y., Liang Q., Li Y., Luo H. Surface Oxygen Vacancies and Carbon Dopant Co-Decorated Magnetic ZnFe2O4 as Photo-Fenton Catalyst towards Efficient Degradation of Tetracycline Hydrochloride // Chemosphere. 2022. V. 302. P. 134832. https://doi.org/10.1016/j.chemosphere.2022.134832
  10. Luo J., Wu Y., Chen X., He T., Zeng Y., Wang G., Wang Y., Zhao Y. Chen Z. Synergistic Adsorption-Photocatalytic Activity Using Z-Scheme Based Magnetic ZnFe2O4/CuWO4 Heterojunction for Tetracycline Removal // J. Alloys Compd. 2022. V. 91025. P. 164954. https://doi.org/10.1016/j.jallcom.2022.164954
  11. Корнейков Р.И., Иваненко В.И., Аксенова С.В. Ионообменное извлечение из растворов катионов Zn2+, Co2+ и Ni2+ фосфатотитановыми матрицами // Неорган. материалы. 2022. Т. 58. № 3. С. 297–301. https://doi.org/10.31857/S0002337X22030071
  12. Корнейков Р.И., Иваненко В.И., Аксенова С.В. Процессы сорбции/десорбции катионов Cu2+ и Ni2+ на аморфных фосфатотитановых сорбентах // Неорган. материалы 2022. Т. 58. № 2. С. 150–154. https://doi.org/10.31857/S0002337X22020075
  13. Zhao X., Baharinikoo L., Farahani M.D., Mahdizadeh B., Farizhandi A.A.K. Experimental Modelling Studies on the Removal of Dyes and Heavy Metal Ions Using ZnFe2O4 Nanoparticles // Sci. Rep. 2022. V. 12. № 1. P. 5987. https://doi.org/10.1038/s41598-022-10036-y
  14. Amin A.M.M., Rayan D.A., Ahmed Y.M.Z., El-Shall M.S., Abdelbasir S.M. Zinc Ferrite Nanoparticles from Industrial Waste for Se(IV) Elimination from Wastewater // J. Environ. Manage. 2022. V. 31215. P. 114956. https://doi.org/10.1016/j.jenvman.2022.114956
  15. Wu X., Lu J., Huang S., Shen X., Cui S., Chen X. Facile Fabrication of Novel Magnetic 3-D ZnFe2O4/ZnO Aerogel Based Heterojunction for Photoreduction of Cr(VI) under Visible Light: Controlled Synthesis, Facial Change Distribution, and DFT Study // Appl. Surf. Sci. 2022. V. 59430. P. 153486. https://doi.org/10.1016/j.apsusc.2022.153486
  16. Бузько В.Ю., Шамрай И.И., Рябова М.Ю., Киреева Г.В., Горячко А.И. Свойства наноразмерного никель-цинкового феррита, полученного различными методами // Неорган. материалы. 2021. Т. 57. № 1. С. 41–46. https://doi.org/10.31857/S0002337X21010024
  17. Gautam J., Kannan K., Meshesha M.M., Dahal B., Subedi S., Ni L., Wei Y., Yang B.L. Heterostructure of Polyoxometalate/Zinc-Iron-Oxide Nanoplates as an Outstanding Bifunctional Electrocatalyst for the Hydrogen and Oxygen Evolution Reaction // J. Colloid Interface Sci. 2022. V. 618. P. 419–430. https://doi.org/10.1016/j.jcis.2022.03.103
  18. Fu Y.-Ming, Tang Y.-Bin, Shi W.-Long, Chen F.-Yan, Guo F., Hao C.-Chen Preparation of Rambutan-Shaped Hollow ZnFe2O4 Sphere Photocatalyst for the Degradation of Tetracycline by Visible-Light Photocatalytic Persulfate Activation // Mater. Chem. Phys. 2022. V. 2861. P. 126176. https://doi.org/10.1016/j.matchemphys.2022.126176
  19. Миттова И.Я., Перов Н.С., Алехина Ю.А., Миттова В.О., Нгуен А.Т., Копейченко Е.И., Сладкопевцев Б.В. Размер и магнитные характеристики нанокристаллов YFeO3 // Неорган. материалы. 2022. Т. 58. № 3. С. 283–289. https://doi.org/10.31857/S0002337X22030113
  20. Ларионов Д.С., Битанова В.А., Евдокимов П.В., Гаршев А.В., Путляев В.И. Золь–гель-синтез порошков Ca3(PO4)2 и Ca3–xNa2x(PO4)2 для формирования биокерамики методом 3D-печати // Неорган. материалы. 2022. Т. 58. № 3. С. 317–326. https://doi.org/10.31857/S0002337X22030095
  21. Морозова Л.В. Синтез нанокристаллических порошков в системе CеO2〈ZrO2〉–Al2O3 цитратным золь–гель-методом // Неорган. материалы. 2021. Т. 57. № 2. С. 163–172. https://doi.org/10.31857/S0002337X21020093
  22. Sakfali J., Ben Chaabene S., Akkari R., Said Zina M. One-Pot Sol-Gel Synthesis of Doped TiO2 Nanostructures for Photocatalytic Dye Decoloration // Russ. J. Inorg. Chem. 2022. V. 67. № 8. P. 1324–1337. doi.https://doi.org/10.1134/S003602362208023X
  23. Patil S.B., Naik H.S.B., Nagaraju G., Viswanath R., Rashmi S.K., Kumar M.V. Sugarcane Juice Mediated Eco-Friendly Synthesis of Visible Light Active Zinc Ferrite Nanoparticles: Application to Degradation of Mixed Dyes and Antibacterial Activities // Mater. Chem. Phys. 2018. V. 212. P. 351–362. https://doi.org/10.1016/j.matchemphys.2018.03.038
  24. Zhang J., Song J.-M., Niu H.-L., Mao C.-J., Zhang S.-Y., Shen Y.-H. ZnFe2O4 Nanoparticles: Synthesis, Characterization, and Enhanced Gassensing Property for Acetone // Sens. Actuators, B. 2015. V. 221. P. 55–62. https://doi.org/10.1016/j.snb.2015.06.040
  25. Cherif K., Rekhila G., Omeiri S., Bessekhouad., Trari M. Physical and Photoelectrochemical Properties of the Spinel ZnCr2O4 Prepared by Sol Gel Application to Orange II Degradation under Solar Light // J. Photochem. Photobiol., A: Chem. 2019. V. 368. P. 290–295. https://doi.org/10.1016/j.jphotochem.2018.10.003
  26. Simonenko T.L., Simonenko N.P., Simonenko E.P., Kuznetsov N.T. Features of Glycol-Citrate Synthesis of Highly Dispersed Oxide La0.6Sr0.4Co0.2Fe0.8O3–δ // Russ. J. Inorg. Chem. 2022. V. 67. № 10. P. 1495–1502. https://doi.org/10.1134/S0036023622600939
  27. Шабельская Н.П., Егорова М.А., Арзуманова А.В., Яковенко Е.А., Забабурин В.М., Вяльцев А.В. Получение композиционных материалов на основе феррита кобальта(II) для очистки водных растворов // Изв. вузов. Сер.: Химия и хим. технология. 2021. Т. 64. № 2. С. 95–102. https://doi.org/10.6060/ivkkt.20216402.6215
  28. Shabelskaya N.P., Egorova M.A., Vasileva E.V., Polozhentsev O.E. Photocatalytic Properties of Nanosized Zinc Ferrite and Zinc Chromite // Adv. Nat. Sci.: Nanosci. Nanotechnol. 2021. V. 12. № 1. P. 015004. https://doi.org/10.1088/2043-6254/abde3b
  29. Gagarin P.G., Gus’kov A.V., Gus’kov V.N., Kondrat’eva O.N., Nikiforova G.E., Pechkovskaya K.I., Ryumin M.A., Tyurin A.V., Khoroshilov A.V., Efimov N.N., Gavrichev K.S. Thermal, Thermodynamic, and Magnetic Properties of Europium Stannate Eu2Sn2O7 // Russ. J. Inorg. Chem. 2022. V. 67. № 11. P. 1803–1812. https://doi.org/10.1134/S0036023622601015

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (230KB)
3.

Download (925KB)

Copyright (c) 2023 Н.П. Шабельская, М.А. Егорова, А.М. Раджабов, В.А. Ульянова, Ю.А. Гайдукова