Effect of Lithium Ions on the Properties of Calcium Sulfate Cement Materials

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We have studied calcium sulfate (CS) based cement materials containing up to 5 mol % lithium cations. The presence of lithium ions has been shown to increase the solubility of the CS cements in Dulbecco’s solution, which is accompanied by an increase in the pH of extracts from 6.0 to 8.7. Lithium cations were detected in Dulbecco’s phosphate buffered saline during the first 24 h of the experiment, and a calcium phosphate layer was formed on the surface of the lithium-containing CS cements during the seventh day. The presence of lithium ions has been shown to cause a twofold decrease in the temperature of the transition from calcium sulfate dihydrate to the hemihydrate.

About the authors

D. R. Khayrutdinova

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119334, Moscow, Russia

Email: dvdr@list.ru
Россия, 119334, Москва, Ленинский пр., 49

S. M. Barinov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119334, Moscow, Russia

Email: dvdr@list.ru
Россия, 119334, Москва, Ленинский пр., 49

A. I. Ogarkov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119334, Moscow, Russia

Email: dvdr@list.ru
Россия, 119334, Москва, Ленинский пр., 49

A. A. Konovalov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119334, Moscow, Russia

Email: dvdr@list.ru
Россия, 119334, Москва, Ленинский пр., 49

A. I. Sinaiskaya

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119334, Moscow, Russia

Email: dvdr@list.ru
Россия, 119334, Москва, Ленинский пр., 49

T. O. Obolkina

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119334, Moscow, Russia

Email: dvdr@list.ru
Россия, 119334, Москва, Ленинский пр., 49

A. A. Egorov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119334, Moscow, Russia

Email: dvdr@list.ru
Россия, 119334, Москва, Ленинский пр., 49

A. S. Fomin

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119334, Moscow, Russia

Email: dvdr@list.ru
Россия, 119334, Москва, Ленинский пр., 49

S. V. Smirnov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119334, Moscow, Russia

Email: dvdr@list.ru
Россия, 119334, Москва, Ленинский пр., 49

Yu. B. Tut’kova

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119334, Moscow, Russia

Email: dvdr@list.ru
Россия, 119334, Москва, Ленинский пр., 49

O. S. Antonova

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119334, Moscow, Russia

Email: dvdr@list.ru
Россия, 119334, Москва, Ленинский пр., 49

P. A. Krokhicheva

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119334, Moscow, Russia

Email: dvdr@list.ru
Россия, 119334, Москва, Ленинский пр., 49

M. A. Goldberg

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119334, Moscow, Russia

Email: dvdr@list.ru
Россия, 119334, Москва, Ленинский пр., 49

V. S. Komlev

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119334, Moscow, Russia

Author for correspondence.
Email: dvdr@list.ru
Россия, 119334, Москва, Ленинский пр., 49

References

  1. Jiang N., Qin C.H., Ma Y.F., Wang L., Yu B. Possibility of One-Stage Surgery to Reconstruct Bone Defects Using the Modified Masquelet Technique with Degradable Calcium Sulfate as a Cement Spacer: a Case Report and Hypothesis // Biomed. Rep. 2016. V. 4. № 3. P. 374–378. https://doi.org/10.3892/br.2016.584
  2. Hao F., Qin L., Liu J., Chang J., Huan Z., Wu L. Assessment of Calcium Sulfate Hemihydrate–Tricalcium Silicate Composite for Bone Healing in a Rabbit Femoral Condyle Model // Mater. Sci. Eng., C. 2018. V. 88. P. 53–60. https://doi.org/10.1016/j.msec.2018.02.024
  3. Wang P., Pi B., Wang J.N., Zhu X.S., Yang H.L. Preparation and Properties of Calcium Sulfate Bone Cement Incorporated with Silk Fibroin and Sema3A-Loaded Chitosan Microspheres // Front. Mater. Sci. 2015. V. 9. № 1. P. 51–65. https://doi.org/10.1007/s11706-015-0278-8
  4. Orsini G., Ricci J., Scarano A., Pecora G., Petrone G., Iezzi G., Piattelli A. Bone-Defect Healing with Calcium-Sulfate Particles and Cement: An Experimental Study in Rabbit // J. Biomed. Mater. Res., Part B. 2004. V. 68. № 2. P. 199–208. https://doi.org/10.1002/jbm.b.20012
  5. Qin C.H., Zhou C.H., Song H.J., Cheng G.Y., Zhang H.A., Fang J., Tao R. Infected Bone Resection Plus Adjuvant Antibiotic-Impregnated Calcium Sulfate Versus Infected Bone Resection Alone in the Treatment of Diabetic Forefoot Osteomyelitis // BMC Musculoskeletal Disord. 2019. V. 20. № 1. P. 1–8. https://doi.org/10.1186/s12891-019-2635-8
  6. Robinson D., Alk D., Sandbank J., Farber R., Halperin N. Inflammatory Reactions Associated with a Calcium Sulfate Bone Substitute // Ann. Transplantat. 1999. V. 4. № 3–4. P. 91–97. https://europepmc.org/article/med/10853791
  7. Chai F., Raoul G., Wiss A., Ferri J., Hildebrand H.F. Bone Substitutes: Classification and Concerns // Rev. Stomatol. Chir. Maxillo-Fac. 2011. V. 112. № 4. P. 212–221. https://doi.org/10.1016/j.stomax.2011.06.003
  8. Fernandez de Grado G., Keller L., Idoux-Gillet Y., Wagner Q., Musset A.M., Benkirane-Jessel N., Offner D. Bone Substitutes: A Review of Their Characteristics, Clinical Use, and Perspectives for Large Bone Defects Management // J. Tissue Eng. 2018. V. 9. P. 2041731418776819. https://doi.org/10.1177/2041731418776819
  9. Hesaraki S., Nemati R., Nazarian H. Physico–Chemical and in vitro Biological Study of Zinc-Doped Calcium Sulfate Bone Substitute // J. Biomed. Mater. Res., Part B. 2009. V. 91. № 1. P. 37–45. https://doi.org/10.1002/jbm.b.31371
  10. Dikici B.A., Dikici S., Karaman O., Oflaz H. The Effect of Zinc Oxide Doping on Mechanical and Biological Properties of 3D-Printed Calcium Sulfate Based Scaffolds // Biocybern. Biomed. Eng. 2017. V. 37. № 4. P. 733–741. https://doi.org/10.1016/j.bbe.2017.08.007
  11. Huang L., Xie Y.H., Xiang H.B., Hou Y.L., Yu B. Physiochemical Properties of Copper Doped Calcium Sulfate In Vitro and Angiogenesis in vivo // Biotech. Histochem. 2021. V. 96. № 2. P. 117–124. https://doi.org/10.1080/10520295.2020.1776392
  12. Ma Y., Li Y., Hao J., Ma B., Di T., Dong H. Evaluation of the Degradation, Biocompatibility and Osteogenesis Behavior of Lithium-Doped Calcium Polyphosphate for Bone Tissue Engineering // Bio-Med. Mater. Eng. 2019. V. 30. № 1. P. 23–36. https://doi.org/10.3233/BME-181030
  13. Li L., Peng X., Qin Y., Wang R., Tang J., Cui X., Li B. Acceleration of Bone Regeneration by Activating Wnt/B-Catenin Signalling Pathway Via Lithium Released from Lithium Chloride/Calcium Phosphate Cement in Osteoporosis // Sci. Rep. 2017. V. 7. № 1. P. 1–12. https://doi.org/10.1038/srep45204
  14. Таскаева Ю.С., Богатова Н.П. Cоли лития в экспериментальной онкологии // Сибирский науч. мед. журн. 2019. Т. 39. № 5. С. 12–18. https://doi.org/10.15372/SSMJ20190502
  15. Xuemei Wang, Songsong Zhu, Xiaowen Jiang, Yunfeng Li, Donghui Song, Jing Hu. Systemic Administration of Lithium Improves Distracted Bone Regeneration in Rats // Calcif. Tissue Int. 2015. V. 96. P. 534–650. https://doi.org/10.1007/s00223-015-0004-7
  16. Keselowsky B.G., Collard D.M., García A.J. Surface Chemistry Modulates Focal Adhesion Composition and Signaling Through Changes in Integrin Binding // Biomaterials. 2004. V. 25. № 28. P. 5947–5954. https://doi.org/10.1016/j.bimaterials.2004.01.062
  17. Смирнов В.В., Хайрутдинова Д.Р., Антонова О.С., Гольдберг М.А., Смирнов С.В., Баринов С.М. Влияние замещений фосфат-групп на сульфат-группы на фазообразование при синтезе гидроксиапатита // Докл. Академии наук. 2017. Т. 476. № 3. С. 293–296. https://doi.org/10.7868/S0869565217270111
  18. Бутт Ю.М., Сычев М.М., Тимашев В.В. Химическая технология вяжущих материалов / Под ред. Тимашева В.В. М.: Высш. школа, 1980. 472 с.
  19. Киргинцев А.Н. Растворимость неорганических веществ в воде. Рипол Классик, 1972. 245 с.
  20. Хайрутдинова Д.Р., Гольдберг М.А., Крохичева П.А., Антонова О.С., Тютькова Ю.Б., Смирнов С.В., Баринов С.М., Комлев В.С. Особенности растворимости и цитосовместимости in vitro костных цементов на основе сульфата кальция, содержащих фосфат-ионы // Материаловедение. 2021. № 6. С. 39–48. https://doi.org/10.31044/1684-579X-2021-0-6-39-48
  21. Izquierdo-Barba I., Salinas A.J., Vallet-Regí M. In vitro Calcium Phosphate Layer Formation on Sol-Gel Glasses of The CaO-SiO2 System // J. Biomed. Mater. Res. 1999. V. 47. № 2. P. 243–250. https://doi.org/10.1002/(SICI)1097-4636(199911)47: 2<243::AID-JBM15>3.0.CO;2-S
  22. Koutsoukos P.G., Nancollas G.H. Crystal Growth of Calcium Phosphates-Epitaxial Considerations // J. Cryst. Growth. 1981. V. 53. № 1. P. 10–19. https://doi.org/10.1016/0022-0248(81)90051-8
  23. Меньшикова Е.А., Жакова У.В. Применение синхронного термического анализа при изучении гипсового сырья // Проблемы минералогии, петрографии и металлогении. Научные чтения памяти ПН Чирвинского. 2008. № 11. С. 78–80.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (174KB)
3.

Download (364KB)
4.

Download (193KB)
5.

Download (276KB)
6.

Download (2MB)
7.

Download (231KB)
8.

Download (3MB)
9.

Download (117KB)
10.

Download (83KB)

Copyright (c) 2023 Д.Р. Хайрутдинова, М.А. Гольдберг, П.А. Крохичева, О.С. Антонова, Ю.Б. Тютькова, С.В. Смирнов, А.С. Фомин, А.А. Егоров, Т.О. Оболкина, А.И. Синайская, А.А. Коновалов, А.И. Огарков, С.М. Баринов, В.С. Комлев