Effect of TiO2 Additions on the Properties of Bioactive Granulated Materials of the TiO2–SiO2–P2O5/СаO(ZnO) System
- Authors: Borilo L.P.1, Lyutova E.S.1, Tkachuk V.A.1
-
Affiliations:
- National Research Tomsk State University, 634050, Tomsk, Russia
- Issue: Vol 59, No 1 (2023)
- Pages: 71-76
- Section: Articles
- URL: https://medjrf.com/0002-337X/article/view/668402
- DOI: https://doi.org/10.31857/S0002337X23010050
- EDN: https://elibrary.ru/OPJXKI
- ID: 668402
Cite item
Abstract
Tokem-250 cation exchanger-based granulated materials of the TiO2–SiO2–P2O5/СаO(ZnO) system have been synthesized in solution by a sol–gel process. The scaffold of the material consists of TiO2–SiO2–P2O5 and its interior is filled with CaO (ZnO) (TiO2–SiO2–P2O5/CaO and TiO2–SiO2–P2O5/ZnO samples). The Tokem-250 carboxylic cation exchange resin has high selectivity for Ca2+ and Zn2+ ions, which allows it to be used in biomaterials design because calcium is one of the building blocks of bone tissue and zinc has a direct stimulating effect on the formation of bone tissue and offers antibacterial properties. To obtain Tokem-250 cation exchanger-based granulated composite materials, the total exchange capacity of the Tokem-250 cation exchange resin and its sorption capacity for Ca2+ and Zn2+ have been determined using Trilon titration. We have found heat treatment conditions that ensure a uniform structure of the material: at 150, 250, and 350°C for 30 min at each temperature, followed by annealing at 600°C for 6 h and at 800°C for 1 h. The addition of zinc oxide has an advantageous effect on the ability of the material to form a calcium phosphate layer on its surface, and the samples thus prepared can be used for further investigation.
About the authors
L. P. Borilo
National Research Tomsk State University, 634050, Tomsk, Russia
Email: tk_valeria@bk.ru
Россия, 634050, Томск, пр. Ленина, 36
E. S. Lyutova
National Research Tomsk State University, 634050, Tomsk, Russia
Email: tk_valeria@bk.ru
Россия, 634050, Томск, пр. Ленина, 36
V. A. Tkachuk
National Research Tomsk State University, 634050, Tomsk, Russia
Author for correspondence.
Email: tk_valeria@bk.ru
Россия, 634050, Томск, пр. Ленина, 36
References
- Kim T., See C.W., Li X., Zhu D. Orthopedic Implants and Devices for Bone Fractures and Defects: Past, Present and Perspective // Eng. Regener. 2022. V. 1. P. 6–18. https://doi.org/10.1016/j.engreg.2020.05.003
- Hart N.H., Nimphius S., Rantalainen T., Ireland A., Siafarikas A., Newton R.U. Mechanical Basis of Bone Strength: Influence of Bone Material, Bone Structure and Muscle Action // J. Musculoskeletal Neuronal Interact. 2017. V. 17. № 3. P. 114–139. PubMed ID: 28860414
- Borilo L.P., Lyutova E.S., Spivakova L.N. Study of Biological Properties of Thin-Film Materials on the Basis of the SiO2–P2O5–CaO System. // Key Eng. Mater. 2016. V. 683. P. 427–432. https://doi.org/10.4028/www.scientific.net/KEM.683.427
- Kaur M., Singh K. Review on Titanium and Titanium Based Alloys as Biomaterials for Orthopaedic Applications // Mater. Sci. Eng. 2019. P. 844–862. https://doi.org/10.1016/j.msec.2019.04.064
- Jeong J., Kim J.H., Shim J.H., Hwang N.S., Heo C.Y. Bioactive Calcium Phosphate Materials and Application in Bone Regeneration // J. Biomed. Res. 2019. V. 23. № 1. P. 1–11. https://doi.org/10.1186/s40824-018-0149-3
- Wajda A., Goldmann W.H., Detsch R., Boccaccini A.R., Sitarz M. Influence of Zinc Ions on Structure, Bioactivity, Biocompatibility and Antibacterial Potential of Melt-Derived and Gel-Derived Glasses from CaO-SiO2 System // J. Non.-Cryst. Solids. 2019. V. 511. № 1. P. 86–99. https://doi.org/10.1016/j.jnoncrysol.2018.12.040
- Yilmaz E., Soylak M. Functionalized Nanomaterials for Sample Preparation Methods // Handbook of Nanomaterials in Analytical Chemistry. 2020. P. 375–413. https://doi.org/10.1016/B978-0-12-816699-4.00015-3
- Борило Л.П., Козик В.В., Лютова Е.С., Жаркова В.В., Бричков А.С. Получение и свойства сферических биоматериалов для системы TiO2–SiO2/СаO с использованием золь-гель метода // Стекло и керамика. 2019. Т. 76. № 8. С. 44–50.
- Ibadat N.F., Ongkudon C.M., Saallah S., Misson M. Synthesis and Characterization of Polymeric Microspheres Template for a Homogeneous and Porous Monolith // Polymers. 2021. V. 13. № 21. P. 3639. https://doi.org/10.3390/polym13213639
- Yang X.T., Gao Y.B., Zhao Z.Z., Tian Y., Kong X.G., Lei X.D., Zhang F.Z. Three-Dimensional Spherical Composite of Layered Double Hydroxides/carbon Nanotube for Ethanol Electrocatalysis // Appl. Clay Sci. 2021. V. 202. https://doi.org/10.1016/j.clay.2020.105964
- Li X., Wang M., Deng Y., Xiao Y., Zhang X. Fabrication and Properties of Ca-P Bioceramic Spherical Granules With Interconnected Porous Structure // ACS Biomater. Sci. Eng. 2017. V. 3. N 8. P. 1557–1566. https://doi.org/10.1021/acsbiomaterials.7b00232
- Bjornoy S.H., Bassett D.C., Ucar S., Andreassen J.-P., Sikorski P.A. A Correlative Spatiotemporal Microscale Study of Calcium Phosphate Formation and Transformation within an Alginate Hydrogel Matrix // Acta Biomater. 2016. № 44. P. 254–266. https://doi.org/10.1016/j.actbio.2016.08.041
- Kolmas J., Groszyk E., Kwiatkowska-Rózycka D. Substituted Hydroxyapatites with Antibacterial Properties // Biomed. Res. Int. 2014. https://doi.org/10.1155/2014/178123
- Kokubo T., Kushitani H., Sakka S. Solutions Able to Reproduce in vivo Surface – Structure Changes in Bioactive Glass – Ceramic // Biomaterials. 1990. V. 24. P. 721–734. https://doi.org/10.1002/jbm.820240607
- Rasskazova L.A., Zhuk I.V., Korotchenko N.M., Brichkov A.S., Chen Y.-W., Paukshtis E.A., Kozik V.V. Synthesis of Magnesium- and Silicon-modified Hydroxyapatites by Microwave-Assisted Method // Sci. Rep. 2019. V. 9. № 1. https://doi.org/10.1038/s41598-019-50777-x
Supplementary files
