Preparation and Electrorheological Properties of Anhydrous Aluminum Orthophosphate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We have studied the process and products of thermal dehydration of highly dispersed monoclinic AlРO4⋅2Н2О prepared by crystallization from an aluminum phosphate solution at 95–97°C and demonstrated the influence of isothermal or polythermal heat treatment on the formation of AlPO4 polymorphs similar in structure to α-quartz or tridymite. The formation of these phases has been shown to be related to changes in the oxygen coordination of aluminum as a result of the detachment of highly polarized molecules of water of crystallization in the composition of AlРO4⋅2Н2О. We have assessed the electrorheological (ER) activity of AlPO4 as a disperse phase of electrorheological fluids, with a weight fraction from 10 to 20%, and found out how AlPO4 preparation conditions influence the shear stress of the electrorheological fluids in electric fields from 3.5 to 4.0 kV/mm. Suspensions containing tridymite AlPO4 particles prepared under isothermal conditions have been shown to exhibit a stronger ER effect, at a level from 420 to 620 Pa. The ER activity of AlPO4 has been shown to increase with increasing heat treatment temperature and time, which is attributable to the formation of a more defect-rich particle surface due to intrinsic thermal disorder.

About the authors

L. S. Eshchenko

Belarussian State Technological University, 220006, Minsk, Belarus

Email: oleg.ponyatovskiy@gmail.com
Беларусь, ул. Свердлова, 13а, Минск

E. V. Korobko

Lykov Institute of Heat and Mass Exchange, Belarussian Academy of Sciences, 220072, Minsk, Belarus

Email: oleg.ponyatovskiy@gmail.com
Беларусь, 220072, Минск, ул. П. Бровки, 15

O. V. Paniatouski

Belarussian State Technological University, 220006, Minsk, Belarus

Author for correspondence.
Email: oleg.ponyatovskiy@gmail.com
Беларусь, ул. Свердлова, 13а, Минск

References

  1. Hao T. Electrorheological Fluids: The Non-aqueous Suspensions, (Studies in Interface Science). V. 22. Cambridge, Massachusetts: Elsevier, 2005. 578 p.
  2. Hwang Y.H. et al. An Electrorheological Spherical Joint Actuator for a Haptic Master with Application to Robot-Assisted Cutting Surgery // Sens. Actuators, A. 2016. V. 249. P. 163–171. https://doi.org/10.1016/j.sna.2016.08.033
  3. Wang L., Gong X., Wen W. Electrorheological Fluid and its Applications in Microfluidics // Top Curr. Chem. 2011. V. 304. P. 91–115. https://doi.org/10.1007/128_2011_148
  4. Chiolerio A., Quadrelli M.B. Smart Fluid Systems: The Advent of Autonomous Liquid Robotics // Adv. Sci. 2017. V. 4. № 7. P. 1700036 (18). https://doi.org/10.1002/advs.201700036
  5. Hines L. et al. Soft Actuators for Small-Scale Robotics // Adv. Mater. 2017. V. 29. P. 1603483 (43). https://doi.org/10.1002/adma.201603483
  6. Hong J.Y. et al. Geometrical Study of Electrorheological Activity with Shape-Controlled Titania-Coated Silica Nanomaterials // J. Colloid Interface Sci. 2010. V. 347. № 2. P. 177–182. https://doi.org/10.1016/j.jcis.2010.03.054
  7. Block H., Kelly J.P. Electro-Rheology // J. Phys. D: Appl. Phys. 1988. V. 21. P. 1661–1677.
  8. Ещенко Л.С., Лаевская Е.В., Коробко Е.В., Новикова З.А. Получение наполнителей для ЭРС на основе гидратированного ортофосфата алюминия // Тр. БГТУ. Сер. Химия. 2015. № 3. С. 56–63.
  9. Лапко К.Н., Макатун В.Н., Уголев И.И. Протонная структура кристаллического двуводного дигидротриполифосфата алюминия // Журн. неорган. химии. 1980. Т. 25. № 6. С. 1688–1691.
  10. Лаевская Е.В., Ещенко Л.С., Коробко Е.В., Новикова З.А., Унал Х.И. Влияние структуры дигидрата ортофосфата алюминия на его электрореологическую активность // Тепло- и массоперенос-2014: сб. науч. трудов. Минск: Институт тепло- и массопереноса имени А.В. Лыкова НАН Беларуси, 2015. С. 263–270.
  11. Ещенко Л.С., Понятовский О.В. Особенности синтеза высокодисперсных алюмофосфатов состава AlPO4·nH2O // Вес. Нац. акад. Навук Беларусі. Сер. хім. навук. 2021. Т. 57. № 3. С. 310–319. https://doi.org/10.29235/1561-8331-2021-57-3-310-319
  12. Kotova N.P., Ivanov L.P. Stability of Strontium Aluminophosphates in the System SrO–Al2O3–P2O5–H2O at T = 25–350°C and P = Psat –500 bar // Geochem. Int. 2000. V. 38. P. 138−143.
  13. d’Yvoire F. Etude des Phosphates d’Aluminium et de Fer Trivalent. I. L’orthophosphate Neutre d’Aluminium // Bull. Soc. Chim. Fr. 1961. P. 1762−1776.
  14. Мелихов И.В. Физико-химическая эволюция твердого вещества. М.: БИНОМ. Лаборатория знаний, 2006. 309 с.
  15. Ярославцев А.Б. Химия твердого тела. М.: Научный мир, 2009. 328 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (105KB)
3.

Download (212KB)
4.

Download (176KB)
5.

Download (47KB)

Copyright (c) 2023 Л.С. Ещенко, Е.В. Коробко, О.В. Понятовский