Термодинамическое моделирование влияния примесей и добавок NaCl НА химический состав продуктов синтеза карбида кремния методом ачесона
- 作者: Щербакова В.Б.1, Гринчук П.С.1
-
隶属关系:
- Институт тепло- и массообмена им. А.В. Лыкова Национальной академии наук Беларуси
- 期: 卷 60, 编号 3 (2024)
- 页面: 309-315
- 栏目: Articles
- URL: https://medjrf.com/0002-337X/article/view/668485
- DOI: https://doi.org/10.31857/S0002337X24030069
- EDN: https://elibrary.ru/LKYKWS
- ID: 668485
如何引用文章
详细
С помощью термодинамического моделирования изучено образование соединений, включающих примеси, характерные для сырья, используемого в процессе Ачесона. Показано, что на выход карбида кремния в процессе Ачесона существенное влияние оказывает содержание влаги и серы в коксе. Определена последовательность газификации элементов из реакционной смеси при нагревании. Показано, что хлорид натрия существенно влияет на состояние металлических примесей, способствуя газификации алюминия, магния и кальция. Оценена концентрация летучего хлорида кремния, образующегося в присутствии хлорида натрия.
全文:

作者简介
В. Щербакова
Институт тепло- и массообмена им. А.В. Лыкова Национальной академии наук Беларуси
编辑信件的主要联系方式.
Email: shch@hmti.ac.by
白俄罗斯, Минск
П. Гринчук
Институт тепло- и массообмена им. А.В. Лыкова Национальной академии наук Беларуси
Email: shch@hmti.ac.by
白俄罗斯, Минск
参考
- Гаршин А.П. Новые конструкционные материалы на основе карбида кремния. М.: Юрайт, 2021. 182 с.
- Sevastyanov V.G., Ezhov Yu.S., Simonenko E.P., Kuznetsov N.T. Thermodynamic Analysis of the Production of Silicon Carbide via Silicon Dioxide and Carbon // Mater. Sci. Forum. Trans Tech. Publ. Ltd. 2004. V. 457. P. 59–62.
- Павелко Р.Г., Севастьянов В.Г., Ежов Ю.С., Кузнецов Н.Т. Термодинамическое обоснование и экспериментальное исследование транспорта карбида кремния при карботермическом восстановлении SiO2 // Неорган. материалы. 2007. Т. 43. № 7. С. 792–796.
- Полях О.А., Ноздрин И.В., Строкина И.В., Якушевич Н.Ф., Хорощенко А.А., Комрони М. Физико-химические основы карботермического восстановления оксида кремния в печи сопротивления // Металлургия: технологии, инновации, качество. Тр. XXIII Междунар. науч.-практ. Конф. / Под общ. ред. Юрьева А.Б. Новокузнецк: Сибирский государственный индустриальный университет, 2022. С. 180–186.
- Xia Z., Gao J., Zhang T., Wang K., Chen F., Xu G., Zhong Z., Su F. Thermodynamic Analysis of the Key Reactions in Synthesizing Inorganic Silicon Compounds or Products // Ind. Eng. Chem. Res. 2023. V. 62. № 33. P. 13213–13222. https://doi.org/10.1021/acs.iecr.3c01802
- Lin Y.-J., Tsang C.P. The Effects of Starting Precursors on the Carbothermal Synthesis of SiC Powders // Ceram. Int. 2003. V. 29. № 1. P. 69–75. https://doi.org/10.1016/S0272-8842(02)00091-3
- Gupta G.S., Raj P., Tiwari K. An Analysis of Heat Distribution in the Production of SiC Process // Procedia Manufacturing. 2019. V. 30. P. 64–70. https://doi.org/10.1016/j.promfg.2019.02.010
- Gupta G.S., Raj P. Temperature Measurements in a Laboratory Scale Furnace for Manufacturing of Silicon Carbide Through Acheson Process // Measurement. 2020. V. 151. P. 107131. https://doi.org/10.1016/j.measurement.2019.107131
- Raj P., Gupta G.S., Rudolph V. Silicon Carbide Formation by Carbothermal Reduction in the Acheson Process: A Hot Model Study // Thermochim. Acta. 2020. V. 687. P. 178577. https://doi.org/10.1016/j.tca.2020.178577
- Находнова А.В., Самойлов В.М., Фатеева М.А., Гончарова Н.Н. Применение рамановской спектроскопии для контроля температурных полей керна печи Ачесона // Спектроскопия комбинационного рассеяния света: 7-й Урало-Сибирский семинар. Екатеринбург: Институт геологии и геохимии им. академика А.Н. Заварицкого, 2021. С. 118–120.
- Крашенникова Н.С., Фролова И.В. Использование кварцевого песка Туганского месторождения в технологии тарного стекла // Изв. Томского политехн. ун-та. 2004. Т. 307. № 4. С. 113–116.
- Feng D., Qin Z., Ren Q., Sun S., Xia Q., Ru H., Wang W., Ren S., Zhang C. Occurrence Forms of Major Impurity Elements in Silicon Carbide // Ceram. Int. 2022. V. 48. № 1. P. 205-211. https://doi.org/10.1016/j.ceramint.2021.09.095
- Каменцев М.В. Искусственные абразивные материалы. М.: Машгиз, 1950. 176 с.
- Carbide, Nitride, and Boride Materials Synthesis and Processing / Ed. Weimer A.W. L., N. Y.: Chapman & Hall, 1997. 671 p.
- Matizamhuka W.R. Gas Transport Mechanisms and the Behaviour of Impurities in the Acheson Furnace for the Production of Silicon Carbide // Heliyon. 2019. V. 5. № 4. P. e01535. https://doi.org/10.1016/j.heliyon.2019.e01535
- Zhou L.Y., Telle R., Purifying Mechanism in the Acheson Process - a Thermodynamic Study // Mater. Sci. Forum. 2010. V. 645. P. 41–44. https://doi.org/10.4028/www.scientific.net/MSF.645-648.41
- Wang Z., Jiang M., Ning P., Xie G., Thermodynamic Modeling and Gaseous Pollution Prediction of the Yellow Phosphorus Production // Ind. Eng. Chem. Res. 2011. V. 50. № 21. P. 12194–12202. https://doi.org/10.1021/ie200419a
- Zhang Y., Ji Y., Qian H. Progress in Thermodynamic Simulation and System Optimization of Pyrolysis and Gasification of Biomass // Green Chem. Eng. 2021. V. 2. № 3. P. 266–283. https://doi.org/10.1016/j.gce.2021.06.003
- Салина В.А., Жучков В.И., Сычев А.В. Термодинамическое моделирование карботермического процесса восстановления хрома из оксидной системы Cr2O3–FeO–CaO–SiO2–MgO–Al2O3 // Расплавы. 2020. № 6. С. 608–615. https://doi.org/10.31857/S0235010620060110
- Koukkari P., Pajarre R. A Gibbs Energy Minimization Method for Constrained and Partial Equilibria // Pure Appl. Chem. 2011. V. 83. № 6. P. 1243–1254. https://doi.org/10.1351/PAC-CON-10-09-36
补充文件
