Получение контактов химическим осаждением Ni и Co на каталитически активной поверхности термоэлектрических материалов

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Определена структура и разработан способ получения контактов к наноструктурированным термо-электрическим материалам. Контакты формировали на каталитически активной поверхности химическим осаждением Ni или Co в щелочных растворах с использованием в качестве восстановителей гипофосфит-анионов. Сформированные химическим осаждением пленки Ni и Co толщиной от 5 до 8 мкм образуют сплошное равномерное покрытие, содержащее не менее 82 мас. % металлов и от 7.4 до 9.1 мас. % фосфора. Присутствие фосфора увеличивает барьерные свойства контактов. Удельное сопротивление пленок Co и Ni составило 10×108 и 12×108 Ом м соответственно. Контакты обладали высокой адгезионной прочностью (до 20 МПа) и низким удельным контактным сопротивлением (порядка 109 Ом м2), а также термической стабильностью до 600 К.

全文:

受限制的访问

作者简介

Е. Корчагин

Национальный исследовательский университет “МИЭТ”

Email: m.s.rogachev88@gmail.com
俄罗斯联邦, пл. Шокина, 1, Зеленоград, Москва, 124498

Ю. Штерн

Национальный исследовательский университет “МИЭТ”

Email: m.s.rogachev88@gmail.com
俄罗斯联邦, пл. Шокина, 1, Зеленоград, Москва, 124498

И. Петухов

Национальный исследовательский университет “МИЭТ”

Email: m.s.rogachev88@gmail.com
俄罗斯联邦, пл. Шокина, 1, Зеленоград, Москва, 124498

М. Штерн

Национальный исследовательский университет “МИЭТ”

Email: m.s.rogachev88@gmail.com
俄罗斯联邦, пл. Шокина, 1, Зеленоград, Москва, 124498

М. Рогачев

Национальный исследовательский университет “МИЭТ”

编辑信件的主要联系方式.
Email: m.s.rogachev88@gmail.com
俄罗斯联邦, пл. Шокина, 1, Зеленоград, Москва, 124498

А. Шерченков

Национальный исследовательский университет “МИЭТ”

Email: m.s.rogachev88@gmail.com
俄罗斯联邦, пл. Шокина, 1, Зеленоград, Москва, 124498

А. Козлов

Национальный исследовательский университет “МИЭТ”

Email: m.s.rogachev88@gmail.com
俄罗斯联邦, пл. Шокина, 1, Зеленоград, Москва, 124498

Р. Рязанов

Научно-производственный комплекс “Технологический центр”

Email: m.s.rogachev88@gmail.com
俄罗斯联邦, пл. Шокина, 1, Зеленоград, Москва, 124498

参考

  1. Shittu S., Li G., Zhao X., Ma X. Review of Thermoelectric Geometry and Structure Optimization for Performance Enhancement // Appl. Energy. 2020. V. 268. P. 115075. https://doi.org/10.1016/j.apenergy.2020.115075
  2. Shtern M.Y., Rogachev M.S., Shtern Y.I., Gromov D.G., Kozlov A.O., Karavaev I.S. Thin-Film Contact Systems for Thermocouples Operating in a Wide Temperature Range // J. Alloys Compd. 2021. V. 852. P. 156889. https://doi.org/10.1016/j.jallcom.2020.156889
  3. Joshi G., Mitchell D., Ruedin J., Hoover K., Guzman R., McAleer M., Wood L., Savoy S. Pulsed-Light Surface Annealing for Low Contact Resistance Interfaces between Metal Electrodes and Bismuth Telluride Thermoelectric Materials // J. Mater. Chem. C. 2019. V. 7. № 3. P. 479–483. https://doi.org/10.1039/c8tc03147a
  4. Штерн М.Ю. Многосекционные термоэлементы, преимущества и проблемы их создания // ФТП. 2021. Т. 55. № 12. С. 1105–1114. https://doi.org/10.21883/FTP.2021.12.51690.02
  5. Korchagin E., Shtern M., Petukhov I., Shtern Y., Rogachev M., Kozlov A., Mustafoev B. Contacts to Thermoelectric Materials Obtained by Chemical and Electrochemical Deposition of Ni and Co // J. Electron. Mater. 2022. V. 51. P. 5744–5758. https://doi.org/10.1007/s11664-022-09860-9
  6. Zhu X., Cao L., Zhu W., Deng Y. Enhanced Interfacial Adhesion and Thermal Stability in Bismuth Telluride/Nickel/Copper Multilayer Films with Low Electrical Contact Resistance // Adv. Mater. Interfaces. 2018. V. 5. № 23. P. 1801279. https://doi.org/10.1002/admi.201801279
  7. Wu H.-j., Wu A.T., Wei P.-c., Chen S.-w. Interfacial Reactions in Thermoelectric Modules // Mater. Res. Lett. 2018. V. 6. № 4. P. 244–248. https://doi.org/10.1080/21663831.2018.1436092
  8. Li S., Yang D., Tan Q., Li L. Evaluation of Electroplated Co-P Film as Diffusion Barrier between In-48Sn Solder and SiC-Dispersed Bi2Te3 Thermoelectric Material // J. Electron. Mater. 2015. V. 44. P. 2007–2014. https://doi.org/10.1007/s11664-015-3642-7
  9. Hsieh H.C., Wang C.H., Lin W.C., Chakroborty S., Lee T.H., Chu H.S., Wu A.T. Electroless Co-P Diffusion Barrier for n-PbTe Thermoelectric Material // J. Alloys Compd. 2017. V. 728. P. 1023–1029. https://doi.org/10.1016/j.jallcom.2017.09.051
  10. Hsieh H.C., Wang C.H., Lan T.-W., Lee T.-H., Chen Y.-Y., Chu H.-S., Wu A.T. Joint Properties Enhancement for PbTe Thermoelectric Materials by Addition of Diffusion Barrier // Mater. Chem. Phys. 2020. V. 246. P. 122848. https://doi.org/10.1016/j.matchemphys.2020.122848
  11. Liqun C., Deqing M., Yancheng W., Yang L. Ni Barrier in Bi 2 Te 3 -Based Thermoelectric Modules for Reduced Contact Resistance and Enhanced Power Generation Properties // J. Alloys Compd. 2019. V. 796. P. 314–320. https://doi.org/10.1016/j.jallcom.2019.04.293
  12. De Boor J., Droste D., Schneider C., Janek J., Mueller E. Thermal Stability of Magnesium Silicide/Nickel Contacts // J. Electron. Mater. 2016. V. 45. P. 5313–5320. https://doi.org/10.1007/s11664-016-4716-x
  13. Liu W., Bai S. Thermoelectric Interface Materials: A Perspective to the Challenge of Thermoelectric Power Generation Module // J. Materiomics. 2019. V. 5. № 3. P. 321–336. https://doi.org/10.1016/j.jmat.2019.04.004
  14. Gupta R.P., Xiong K., White J.B., Cho K., Alshareef H.N., Gnade B.E. Low Resistance Ohmic Contacts to Bi2Te3 Using Ni and Co Metallization // J. Electrochem. Soc. 2010. V. 157. № 6. P. H666–H670. https://doi.org/10.1149/1.3385154
  15. Гамбург Ю.Д. Химическое никелирование (получение никель-фосфорных покрытий путем электрокаталитического восстановления гипофосфитом). М.: РАН, 2020. 82 с.
  16. Глушко В.П. Термические константы веществ. М.: ВИНИТИ, 1972. 367 с.
  17. Рузинов Л.П., Гуляницкий Б.С. Равновесные превращения металлургических реакций. М.: Металлургия, 1975. 416 с.
  18. Lide D.R. Handbook of Chemistry and Physics. 84th ed. Boca Raton: CRC, 2003. 1989 p.
  19. Shtern M.Y., Karavaev I.S., Shtern Y.I., Kozlov A.O., Rogachev M.S. The Surface Preparation of Thermoelectric Materials for Deposition of Thin-film Contact Systems // Semiconductors. 2019. V. 53. P. 1848–1852. https://doi.org/10.1134/S1063782619130177
  20. Ажогин Ф.Ф., Беленький М.А., Галль И.Е., Гарбер М.И. Гальванотехника. Справочник. М.: Металлургия, 1987. 736 с.
  21. Штерн М.Ю., Караваев И.С., Рогачев М.С., Штерн Ю.И., Мустафоев Б.Р., Корчагин Е.П., Козлов А.О. Методики исследования электрического контактного сопротивления в структуре металлическая пленка-полупроводник // ФТП. 2022. Т. 56. № 1. C. 31–37 https://doi.org/10.21883/FTP.2022.01.51808.24
  22. Xu H., Zhang Q., Yi L., Huang S., Yang H., Li Y., Guo Z., Hu H., Sun P., Tan X., Liu G.-q., Song K., Jiang J. High Performance of Bi 2 Te 3 -Based Thermoelectric Generator Owing to Pressure in Fabrication Process // Appl. Energy. 2022. V. 326. P. 119959. https://doi.org/10.1016/j.apenergy.2022.119959
  23. Nguyen Y.N., Kim S., Bae S.H., Son I. Enhancement of Bonding Strength in BiTe-Based Thermoelectric Modules by Electroless Nickel, Electroless Palladium, and Immersion Gold Surface Modification // Appl. Surf. Sci. 2021. V. 545. P. 149005. https://doi.org/10.1016/j.apsusc.2021.149005
  24. Park J.M., Hyeon D.Y., Ma H.S., Kim S., Kim S.T., Nguyen Y.N., Son I., Yi S., Kim K.T., Park K.I. Enhanced Output Power of Thermoelectric Modules with Reduced Contact Resistance by Adopting the Optimized Ni Diffusion Barrier Layer // J. Alloys Compd. 2021. V. 884. P. 161119. https://doi.org/10.1016/j.jallcom.2021.161119
  25. Zhang J., Wei P., Zhang H., Li L., Zhu W., Nie X., Zhao W., Zhang Q. Enhanced Contact Performance and Thermal Tolerance of Ni/ Bi 2 Te 3 Joints for Bi 2 Te 3 -Based Thermoelectric Devices // ACS Appl. Mater. Interfaces. 2023. V. 15. № 18. P. 22705–22713. https://doi.org/10.1021/acsami.3c01904
  26. Nguyen Y.N., Son I. Thermomechanical Stability of Bi 2 Te 3 -Based Thermoelectric Modules Employing Variant Diffusion Barriers // Intermetallics. 2022. V. 140. P. 107404. https://doi.org/10.1016/j.intermet.2021.107404
  27. Bae S.H., Kim S., Yi S.H., Son I., Kim K.T., Chung H. Effect of Surface Roughness and Electroless Ni–P Plating on the Bonding Strength of Bi–Te-Based Thermoelectric Modules // Coatings. 2019. V. 9. № 3. P. 213. https://doi.org/10.3390/coatings9030213
  28. Tang H., Bai H., Yang X., Cao Y., Tang K., Zhang Z., Chen S., Yang D., Su X., Yan Y., Tang X. Thermal Stability and Interfacial Structure Evolution of Bi2Te3-Based Micro Thermoelectric Devices // J. Alloys Compd. 2022. V. 896. P. 163090. https://doi.org/10.1016/j.jallcom.2021.163090

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. SEM images of the surface of Ni (a, b) and Co (c, d) films using sputtered Ni (a), Co (c), and chemically deposited Pd (b, d) as catalyst.

下载 (96KB)
3. Fig. 2. Energy dispersive spectra of films using a catalyst: Ni with deposited Ni (a); Co with Pd (b).

下载 (21KB)
4. Fig. 3. Adhesive strength of Ni and Co contacts formed on Bi2Te2.4Se0.6 (a) and Bi0.4Sb1.6Te3 (b) samples.

下载 (26KB)
5. Fig. 4. SEM image of a cleavage of a sample with a Ni contact after annealing.

下载 (21KB)
6. Fig. 5. Mapping of the cleavage of a sample with a Ni contact after annealing.

下载 (92KB)

版权所有 © Russian Academy of Sciences, 2024