Research and optimization of the descent phase of civil aviation aircraft in the vertical navigation problem

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The solution of the problem of forming the high-altitude and high-speed flight profile of civil and military transport aircraft at the phase of descent and optimization according to the economic criterion is carried out using a dynamic model of the movement of the center of mass in the vertical plane. The model takes into account the change in the mass of the aircraft and the systematic component of wind speed. The aerodynamic characteristics of the aircraft, its weight, as well as the altitude-speed and throttle characteristics of the engines are close to a modern standard medium-haul aircraft. A classification of decline trajectories is proposed. For each type of such trajectories, many parameters have been defined that uniquely characterize their properties, and the values of quality criteria that consider the cost and cost of fuel. The influence (relevance) of these parameters on the criteria and properties of trajectories has been assessed. The task of optimizing the phase of descent with the provision of a given time for its execution is formulated. The necessary and sufficient conditions for its feasibility have been obtained. An example of solving this problem for a typical medium-haul aircraft is considered.

Texto integral

Acesso é fechado

Sobre autores

A. Golubeva

FAI GosNIIAS

Autor responsável pela correspondência
Email: aagolubeva@gosniias.ru
Rússia, Moscow

N. Kulanov

FAI GosNIIAS

Email: kulanov_nv@gosniias.ru
Rússia, Moscow

Bibliografia

  1. Маркин Н.Н., Чистов М.С. Терминальное управление посадкой пассажирского самолета // Тр. МАИ. 2010. Вып. 41.
  2. Sang Gyun Park, John-Paul Clarke. Vertical Trajectory Optimization for Continuous Descent Arrival Procedure // AIAA Guidance, Navigation, and Control Conference. Minneapolis, 2012. August.
  3. Lim Y., Gardi A., Sabatini R., Ranasinghe K., Ezer N., Rodgers K., Salluce D. Optimal Energy-based 4D Guidance and Control for Terminal Descent Operations // Aerospace Science and Technology. 2019. V. 95.
  4. Гревцов Н.М., Тегин А.В. Формирование управления самолетом для отслеживания траектории в задаче четырехмерной навигации // Уч. зап. ЦАГИ. 2000. Т. ХХХI. № 1, 2.
  5. Grevtsov N., Dymchenko A. Application of Suboptimal 4-D Navigation Algorithms for Flight Planning and Control Considering Weather Conditions // 29 Congress of the International Council of the Aeronautical Sciences. St. Peterburg, 2014.
  6. Betts J.T., Cramer E.J. Application of Direct Transcription to Commercial Aircraft Trajectory Optimization // J. Guidance, Control, and Dynamics. 1995. V. 18. № 1.
  7. Benson D.A. A Gauss Pseudospectral Transcription for Optimal Control // Ph.D. Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology. Cambridge, 2004.
  8. Agamawi Y.M., Rao A.V. “CGPOPS: A C++ Software for Solving Multiple-Phase Optimal Control Problems Using Adaptive Gaussian Quadrature Collocation and Sparse Nonlinear Programming” // University of Florida, ACM Trans. Math. Softw. 2020. V. 46. № 3. Article 25.
  9. Bedrossian N., Bhatt S., Lammers M., Nguyen L., Zhang Y. First Ever Flight Demonstration of Zero Propellant Maneuver Attitude Control Concept // AIAA GN&C Conference. Hilton Head, 2007.
  10. Прутько А.А. Оптимальные по расходу топлива траектории переориентации крупногабаритных космических конструкций: дис. … канд. техн. наук. Королев, 2021.
  11. Valenzuela A. Aircraft Trajectory Optimization Using Parametric Optimization Theory // Doctoral Thesis, Universidad de Sevilla, 2012.
  12. Franco A., Valenzuela A., Rivas D. Optimality of Standard Flight Procedures of Commercial Aircraft // 5th European Conf. for Aeronautics and Space Sciences. Munich. Germany, 2013.
  13. Голубева А.А., Куланов Н.В. Методика выбора значений параметров этапа взлет самолетов гражданской, военно-транспортной авиации и беспилотных летательных аппаратов // Изв. РАН. ТиСУ. 2019. № 6.
  14. Голубева А.А., Куланов Н.В. Методика и оптимизация этапа набора высоты в задаче вертикальной навигации самолетов гражданской и военно-транспортной авиации // Изв. РАН. ТиСУ. 2021. № 4.
  15. Голубева А.А., Куланов Н.В. Исследования и оптимизация этапа крейсерского полета самолетов гражданской авиации в задаче вертикальной навигации // Изв. РАН. ТиСУ. 2022. №5.
  16. Юревич Е.И. Теория автоматического управления. 3-е изд. СПб.: БХВ-Петербург, 2007.
  17. Григоров П.Ю., Куланов Н.В. Применение концепции обратных задач динамики в задачах вертикальной навигации // Изв. РАН. ТиСУ. 2016. № 3. С. 141–154.
  18. Калинина Е.А., Утешев А.Ю. Теория исключения: учеб. пособие. СПб.: НИИ химии СПбГУ, 2002.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Airspace zone of the arrival airport.

Baixar (164KB)
3. Fig. 2. Flight altitude and speed profile of the aircraft during the descent stage.

Baixar (106KB)
4. Fig. 2. Flight altitude and speed profile of the aircraft during the descent stage.

Baixar (411KB)
5. Fig. 4. Sections of the surface of a given arrival time by planes = 271, 274, 277, 280 kt.

Baixar (127KB)
6. Fig. 5. Sections of the fuel consumption criterion surface by planes = 271, 274, 277, 280 kt.

Baixar (134KB)
7. Fig. 6. Surface of the values ​​of the parameters , Hсн, ar, at which the reduction time is equal to the specified value.

Baixar (132KB)
8. Fig. 7. Fuel consumption surface on descent stage trajectories.

Baixar (130KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024