Structural and magnetic states of magnetostrictive alloys Fe3Me, Me = Al, Ga, Ge in a wide temperature range

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A series of diffraction experiments on a number of alloys similar in composition to stoichiometric Fe3Me with Me = Al, Ga, Ge were performed on X-ray, synchrotron, and neutron radiation sources. In the temperature range (20–1100 K), the structural, magnetic and microstructural characteristics of alloys were determined and their temperature evolution during continuous slow heating and subsequent cooling was studied. The information available in the literature on metastable and equilibrium states of alloys at elevated temperatures is clarified and specified, and their comparative analysis is performed. The identity of the temperature behavior of the alloys was observed at T < 100 K. The search for the tetragonal L60 phase, the formation of which in Fe–Ga alloys is considered as the main reason for the sharp increase in the magnetostriction constant, did not lead to a positive result.

Full Text

Restricted Access

About the authors

A. M. Balagurov

Joint Institute for Nuclear Research; National Research Technological University MISiS; Lomonosov Moscow State University

Email: kirivale@yandex.ru
Russian Federation, Dubna, 141980; Moscow, 119049; Moscow, 119991

I. S. Golovin

Joint Institute for Nuclear Research; National Research Technological University MISiS

Email: kirivale@yandex.ru
Russian Federation, Dubna, 141980; Moscow, 119049

B. Yerzhanov

Joint Institute for Nuclear Research; Kazan Federal Universit; Institute of Nuclear Physics of the Ministry of Energy of the Republic of Kazakhstan

Email: kirivale@yandex.ru
Russian Federation, Dubna, 141980; Kazan, 420008; Almaty, 050032 Kazakhstan

K. V. Kalugin

Joint Institute for Nuclear Research; Lomonosov Moscow State University

Author for correspondence.
Email: kirivale@yandex.ru
Russian Federation, Dubna, 141980; Moscow, 119991

S. V. Sumnikov

Joint Institute for Nuclear Research

Email: kirivale@yandex.ru
Russian Federation, Dubna, 141980

D. Yu. Chernyshov

SNBL at ESRF

Email: kirivale@yandex.ru
France, 71 avenue des Martyrs, Grenoble

References

  1. Clark A.E., Hathaway K.B., Wun-Fogle M., Restorff J.B., Lograsso T.A., Keppens V.M., Petculescu G., Taylor R.A. Extraordinary magnetoelasticity and lattice softening in bcc Fe–Ga alloys // J. Appl. Phys. 2003. V. 93. P. 8621–8623.
  2. Restorff J.B., Wun-Fogle M., Hathaway K.B., Clark A.E., Lograsso T.A., Petculescu G. Tetragonal magnetostriction and magnetoelastic coupling in Fe–Al, Fe–Ga, Fe–Ge, Fe–Si, Fe–Ga–Al, and Fe–Ga–Ge alloys // J. Appl. Phys. 2012. V. 111. P. 023905.
  3. Kubaschewski O. Iron – Binary phase diagrams. Berlin: Springer-Verlag, 1982. 160 p.
  4. Ikeda O., Kainuma R., Ohnuma I., Fukamichi K., Ishida K. Phase equilibria and stability of ordered BCC phases in the Fe-rich portion of the Fe–Al system // Intermetallics. 2001. V. 9. P. 755–761.
  5. Okamoto H. Fe–Ga (Iron-Gallium) // J. Phase Equilibria and Diffusion. 2004. V. 25. P. 100.
  6. Okamoto H. Fe–Ge (Iron-Germanium) // J. Phase Equilibria and Diffusion. 2008. V. 29. P. 292.
  7. Ikeda O., Kainuma R., Ohnuma I., Fukamichi K., Ishida K. Phase equilibria and stability of ordered b.c.c. phases in the Fe-rich portion of the Fe–Ga system // J. Alloys Compd. 2002. V. 347. P. 198–205.
  8. Golovin I.S., Mohamed A.K., Bobrikov I.A., Balagurov A.M. Time-Temperature-Transformation from metastable to equilibrium structure in Fe–Ga // Mater. Letters. 2020. V. 263. P. 127257.
  9. Golovin I.S., Mohamed A.K., Palacheva V.V., Cheverikin V.V., Pozdnyakov A.V., Korovushkin V.V., Balagurov A.M., Bobrikov I.A., Fazel N., Mouas M., Gasser J.- G., Gasser F., Tabary P., Lan Q., Kovacs A., Ostendorp S., Hubek R., Divinski S., Wilde G. Comparative study of structure and phase transitions in Fe-(25-27)%Ga alloys // J. Alloy Comp. 2019. V. 811. P. 152030.
  10. Balagurov A.M., Sumnikov S.V., Cifre J., Palacheva V.V., Chubov D.G., Golovin I.S. In situ study of order-disorder transitions and anelasticity in Fe-26Al alloy // J. Alloys Comp. 2023. V. 932. P. 167663.
  11. Balagurov A.M., Samoylova N.Yu., Sumnikov S.V., Palacheva V.V., Golovin I.S. Structural and magnetic phase transitions in Fe3Ge: A neutron diffraction study // Phys. Rev. Mat. 2023. V. 7. P. 063603.
  12. Golovin I.S., Balagurov A.M., Bobrikov I.A., Sumnikov S.V., Mohamed A.K. Cooling rate as a tool of tailoring structure of Fe–(9–33%)Ga alloys // Intermetallics. 2019. V. 114. P. 106610.
  13. Drijver J.W., Sinnema S.G., Van der Woude F. Magnetic properties of hexagonal and cubic Fe3Ge // J. Phys. F: Met. Phys. 1976. V. 6. P. 2165–2177.
  14. Lograsso T.A., Ross A.R., Schlagel D.L., Clark A.E., Wun-Fogle M. Structural transformation in quenched Fe–Ga alloys // J. Alloy. Comp. 2003. V. 350. P. 95–101.
  15. Balagurov A.M., Chernyshov D.Yu., Bosak A.А., Bobrikov I.A., Sumnikov S.V., Golovin I.S. In-grain phase separation and structural ordering in Fe-Ga alloys seen from reciprocal space // Intermetallics. 2021. V. 128. P. 107016.
  16. Головин И.С., Палачева В.В., Мохамед А.К., Балагуров А.М. Структура и свойства Fe–Ga сплавов – перспективных материалов для электроники // ФММ. 2020. Т. 121. № 9. С. 937–980.
  17. Balagurov A.M. Scientific reviews: high-resolution Fourier diffraction at the IBR-2 reactor // Neutron News. 2005. V. 16. P. 8–12.
  18. Балагуров А.М., Головин И.С. Рассеяние нейтронов в исследованиях функциональных сплавов на основе железа (Fe–Ga, Fe–Al) // УФН. 2021. Т. 191. № 7. С. 738–759.
  19. Dyadkin V., Pattison Ph., Dmitriev V., Chernyshov D. A new multipurpose diffractometer PILATUS@SNBL // J. Synchrotron Radiat. 2016. V. 23. P. 825–829.
  20. Girard A., Nguyen-Thanh T., Souliou S.M., Stekiel M., Morgenroth W., Paolasini L., Minelli A., Gambetti D., Winkler B., Bosak A. A new diffractometer for diffuse scattering studies on the ID28 beamline at the ESRF // J. Synchrotron Radiat. 2019. V. 26. P. 272–279.
  21. Rodriguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction // Physica B. 1993. V. 192. P. 55–69.
  22. Wojdyr M. Fityk: a general-purpose peak fitting program // J. Appl. Cryst. 2010. V. 43. P. 1126–1128.
  23. Sears V.F. Neutron scattering lengths and cross-sections // Neutron News. 1992. V. 3(3). P. 26–37.
  24. Gou J., Yang T., Qiao R., Liu Y., Ma T. Formation mechanism of tetragonal nanoprecipitates in Fe–Ga alloys that dominate the material’s large magnetostriction // Scr. Mater. 2020. V. 185. P. 129–133.
  25. Cahn R.W. Lattice parameter changes on disordering intermetallics // Intermetallics. 1999. V. 7. P. 1089–1094.
  26. Balagurov A.M., Bobrikov I.A., Sumnikov S.V., Golovin I.S. Coherent cluster ordering in Fe-xAl and Fe-xGa alloys // J. Alloy and Comp. 2021. V. 895. P. 162540.
  27. Clark J.B., Hastie J.W., Kihlborg L.H.E., Metselaar R., Thackeray M.M. Definitions of terms relating to phase transitions of the solid state // Pure & Appl. Chem. 1994. V. 66. P. 577594.
  28. Balagurov A.M., Samoylova N.Yu., Golovin I.S. Diffusive and displacive phase transitions in Fe–Ga alloys // Physica B. 2024. V. 676. P. 415668.
  29. Ашкрофт Н., Мермин Н. ФТТ. М.: МИР, 1979.
  30. Новикова С.И. Тепловое расширение твердых тел. М.: Наука, 1974. 199 с.
  31. Liu L., Shiyou F., Liu G., Wu G., Sun X., Li J. Transmission electron microscopy study on the microstructure of Fe85Ga15 alloy // Physica B. 2005. V. 365. P. 102–108.
  32. Jin T., Wang H., Chen Y., Li T., Wang J., Jiang C. Evolution of nanoheterogeneities and correlative influence on magnetostriction in FeGa-based magnetostrictive alloys // Mater. Characteriz. 2022. V. 186. P. 111780.
  33. Xing Q., Du Y., McQueeney R.J., Lograsso T.A. Structural investigations of Fe–Ga alloys: Phase relations and magnetostrictive behavior // Acta Mat. 2008. V. 56. P. 4536–4546.
  34. Sumnikov S.V., Bobrikov I.A., Golovin I.S., Balagurov A.M. Bulk vs. surface structural phases in Fe–27Ga alloy // J. Alloys Comp. 2022. V. 928. P. 167116.
  35. Yan K., Xu Y., Niu J., Wu Y., Li Y., Gault B., Zhao S., Wang X., Li Y., Wang J., Skokov K.P., Gutfleisch O., Wu H., Jiang D., He Y., Jiang C. Unraveling the origin of local chemical ordering in Fe-based solid-solutions // Acta Mat. 2024. V. 264. P. 119583.
  36. He Y., Ke X., Jiang C., Miao N., Wang H., Coey J.M.D., Wang Y., Xu H. Interaction of trace rare earth dopants and nanoheterogeneities induces giant magnetostriction in Fe-Ga alloys // Adv. Funct. Mater. 2018. V. 28. P. 1800858.
  37. Chen B., Gong Y., Zhang Z., Lu Z., Pan S., Guo Y., Xu F. Microstructure related disparity of the magnetostriction in the 100 oriented directionally solidified Fe81Ga19 polycrystals // Scripta Mater. 2023. V. 227. P. 115296.
  38. Zhao X., Ke Y., Xie S., Sun M., Jiang H., Li B., Wang X. Nanoprecipitation induced giant magnetostriction: A time-resolved small-angle neutron scattering study of the vacancy-assisted kinetics // J. Mat. Science & Techn. 2025. V. 210. P. 1–9.
  39. Balagurov A.M., Bobrikov I.A., Chernyshov D.Yu., Sohatsky A.S., Sumnikov S.V., Yerzhanov B., Golovin I.S. Tetragonal phases in Fe-Ga alloys: A quantitative study // Phys. Rev. Mat. 2024. V. 8. P. 073604.
  40. Albertini F., Pareti L., Deriu A., Negri D., Calestani G., Moze O., Kennedy S.J., Sonntag R. A magnetic and structural stydy of Mn, Co, and Ni substituted Fe3Ge2 hexagonal germanides // J. Appl. Phys. 1998. V. 84. P. 401–410.
  41. Wu R. Origin of large magnetostriction in FeGa alloys // J. Appl. Phys. 2002. V. 91. P. 7358–7360.
  42. Cullen J., Zhao P., Wuttig M. Anisotropy of crystalline ferromagnets with defects // J. Appl. Phys. 2007. V. 101. P. 123922.
  43. Ruffoni M.P., Pascarelli S., Grössinger R., Sato Turtelli R., Bormio-Nunes C., Pettifer R.F. Direct Measurement of Intrinsic Atomic Scale Magnetostriction // Phys. Rev. Lett. 2008. V. 101. P. 147202.
  44. Sun M., Jiang W., Ke Y., Ge B., Wang X., Fang Q. Tetragonal dipole dominated Zener relaxation in BCC-structured Fe-17at. %Ga single crystals // Acta Mat. 2023. V. 258. P. 119245.
  45. Golovin I.S. Anelastic Effects in Fe–Ga and Fe–Ga-Based Alloys: A Review // Materials 2023. V. 16. P. 2365.
  46. Черненков Ю.П., Ершов Н.В., Лукшина В.А. Влияние отжига в ферромагнитном состоянии на структуру сплава железа с 18% галлия // ФТТ. 2019. Т. 61. № 1. С. 12–21.
  47. Ершов Н.В., Клейнерман Н.М., Лукшина В.А., Черненков Ю.П., Шишкин Д.А., Смирнов О.П., Семенов В.Г. Ближний порядок в неупорядоченных твердых растворах алюминия в α-железе // ФТТ. 2023. Т. 65. № 3. С. 372–385.
  48. Johansson G., Gorbatov O.I., Etz C. Theoretical investigation of magnons in Fe-Ga alloys // Phys. Rev. B. 2023. V. 108. P. 184410.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Neutron diffraction spectra of alloys in the initial state (left) and after slow heating to 1100 K and cooling to KT (right). Miller indices of the first few Bragg peaks are indicated. The vertical dashes are the calculated peak positions. For Fe3Al, the peak positions are given for the D03 phase cell (aD03 ≈ 2aB2). In the spectrum of Fe3Ge (c) at d ≈ 2 Å, two weak peaks of the B82 phase are visible. In the spectrum of Fe3Ga (e) at d ≈ 2.05 Å, a weak peak of 110 phase A2 is seen. In the spectrum of Fe3Ge (f) at d ≈ 1.85 Å, a weak peak 200 of phase A1 is seen.

Download (817KB)
3. Fig. 2. 2D representation of the evolution of the diffraction spectra evolution of the Fe74.5Ga25.5 composition measured during its heating to 1100 K (+2 K/min) and subsequent cooling to KT (-2 K/min). The temperature axis is from bottom to top and the interplanar spacing axis is from left to right. During heating, the following transitions are observed: D03 → L12 → D019 → A2. At cooling the following transitions are observed: A2 → D03 → L12. The measurement time of one spectrum is 1 min, the 2D-map contains about 850 spectra in total.

Download (870KB)
4. Fig. 3. Parameters of matrix unit cells (triangles, aF, doubled) and clusters (rhombuses, aS) in Fe3Ga alloy determined from the interplanar distances of individual (main and superstructure) diffraction peaks.

Download (146KB)
5. Fig. 4. Temperature dependences of atomic volumes of: Fe3Al (right scale) and Fe3Ge (left scale) alloys (a); pure iron and Fe3Ga alloy (b), determined during their heating at a rate of 2 K/min. In the initial state of the Fe3Ge alloy, the L12 (upper curve) and D019 (lower curve) phases are present in approximately equal proportion. Vertical lines indicate structural transitions of the 1st kind for Fe and Fe3Ga and of the 2nd kind for Fe3Al and Fe3Ge alloys. Approximate values of volumetric KTR (in units of 10-5 1/grade) determined from sections with a linear change in the cell volume are indicated.

Download (407KB)
6. Fig. 5. Temperature dependence of atomic volumes of Fe3Me alloys for Me = Al, Ga, Ge in the low temperature region.

Download (192KB)
7. Fig. 6. Normalised at 20 K values of atomic volumes of Fe3Me alloys in the low temperature region. The curve (dashed) for Fe is constructed from the data given in [30].

Download (228KB)
8. Fig. 7. hkk backspace layer of Fe73Ga27 alloy reconstructed from diffraction data obtained at 20°C at station ID28 (ESRF). The lattice and Miller indices are given for the cubic cell D03 with parameter a ≈ 5.81 Å. Reflexes with all even or all odd Miller indices are allowed in D03. Reflexes with mixed indices belong to phase X. The intensity distribution in the selected [2kk] direction is shown in Fig. 8.

Download (967KB)
9. Fig. 8. Intensity distribution in the [2kk] direction in the hkk layer shown in Fig. 7.

Download (506KB)
10. Fig. 9. hhl backspace layer of Fe73Al27 alloy reconstructed from diffraction data obtained at 20°C at station ID28 (ESRF). The lattice and Miller indices are given for a D03 cubic cell with parameter a ≈ 5.78 Å. For the main (strong) reflexes, the Miller indices satisfy the condition h + k + l = 4n (-2-2-4, 0 0-4, etc.). The remaining reflexes are superstructural. The intensity distribution in the selected [hhl] direction is shown in Fig. 10.

Download (1MB)
11. Fig. 10. Intensity distribution in the [hhl] direction in the hhl layer shown in Fig. 9.

Download (337KB)
12. Fig. 11. Temperature dependences of the magnetisation of Fe3Me alloys measured during cooling at a rate of 6 K/min. Temperatures of transitions to the ferromagnetic state are indicated by vertical lines.

Download (227KB)
13. Fig. 12. Temperature dependence of the ordered magnetic moment of iron in the L12 phase of Fe73Ga27 alloy during its slow cooling. The line corresponds to the phenomenological formula (4) with the parameters indicated in the text.

Download (488KB)
14. Fig. 13. Phase states of Fe3Al, Fe3Ga and Fe3Ge alloys at elevated temperatures during slow heating and subsequent cooling. In the initial state of Fe3Ge alloy, phases D019 and L12 are present in approximately equal volume fractions.

Download (332KB)
15. Fig. 14. Dependences of (Δd)2 on d2 for Fe3Al alloy in the states before heating (triangles) and after the heating-cooling cycle (crosses and rhombuses). The widths of the peaks resolved in the initial B2 phase fit a quadratic dependence corresponding to the average OCD size Lcoh ≈ 580 Å. The peak widths after heating-cooling are described by a quadratic dependence for the superstructural peaks of the D03 phase (Lcoh ≈ 650 Å) and a linear dependence for the B2 phase. The values of (Δd)2 are multiplied by 106.

Download (380KB)