Unveiling the Molecular Basis of Comorbidity of Atherosclerosis and Aortic Aneurysm at the Cellular and Molecular Levels

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Aortic aneurysm (AA) and atherosclerosis (AS) are characterized by ambiguous comorbid relationships between them. This review discusses the molecular mechanisms of formation of these pathologies caused by heterogeneity, plasticity, intercellular interactions, embryonic origin and regional specificity of arterial cells, revealed using the approach of single-cell transcriptomics in humans and in model animals. The importance of interplay of genetic and environmental factors that determine the functional state of blood vessels and the development of pathology through dynamic changes in the cellular composition of arteries within the framework of an ontogenetically regulated spatio-temporal continuum is emphasized, which creates conditions for the formation of comorbidity between diseases. Understanding the key molecular mechanisms underlying the comorbidity of AA and AS is important for the development of new therapeutic strategies for these pathological conditions.

About the authors

A. N. Kucher

Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences

Author for correspondence.
Email: maria.nazarenko@medgenetics.ru
Tomsk, 634050 Russia

M. S. Nazarenko

Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences

Email: maria.nazarenko@medgenetics.ru
Tomsk, 634050 Russia

References

  1. Кучер А.Н., Королёва Ю.А., Назаренко М.С. Эпидемиологическая основа коморбидности аневризмы аорты и атеросклероза сосудов // Бюл. cибирской медицины. 2025. Т. 24. № 1. https://doi.org/10.20538/1682-0363-2025-1-180-192
  2. Isselbacher E.M., Preventza O., Hamilton Black J., 3rd et al. ACC/AHA Guideline for the diagnosis and management of aortic disease: A report of the American Heart Association/American College of Cardiology Joint Committee on clinical practice guidelines // Circulation. 2022. V. 146. № 24. P. e334–e482. https://doi.org/10.1161/CIR.0000000000001106
  3. Gyftopoulos A., Ziganshin B.A., Elefteriades J.A., Ochoa Chaar C.I. Comparison of genes associated with thoracic and abdominal aortic aneurysms // Aorta (Stamford, Conn.). 2023. V. 11. № 3. P. 125–134. https://doi.org/10.1055/s-0043-57266
  4. VanderLaan P.A., Reardon C.A., Getz G.S. Site spe- cificity of atherosclerosis: Site-selective responses to atherosclerotic modulators // Arterioscler. Thromb. Vasc. Biol. 2004. V. 24. № 1. P. 12–22. https://doi.org/10.1161/01.ATV.0000105054.43931.f0
  5. Dalager S., Paaske W.P., Kristensen I.B. et al. Artery-related differences in atherosclerosis expression: Implications for atherogenesis and dynamics in intima-media thickness // Stroke. 2007. V. 38. № 10. P. 2698–2705. https://doi.org/10.1161/STROKEAHA.107.486480
  6. Achneck H., Modi B., Shaw C. et al. Ascending thoracic aneurysms are associated with decreased systemic atherosclerosis // Chest. 2005. V. 128. № 3. P. 1580–1586. https://doi.org/10.1378/chest.128.3.1580
  7. Grewal N., Dolmaci O., Jansen E. et al. Are acute type A aortic dissections atherosclerotic? // Front. Cardiovasc. Med. 2023. V. 9. https://doi.org/10.3389/fcvm.2022.1032755
  8. Zafar M.A., Ziganshin B.A., Li Y. et al. “Big Data” analyses underlie clinical discoveries at the aortic institute // Yale J. Biol. Med. 2023. V. 96. № 3. P. 427–440. https://doi.org/10.59249/LNDZ2964
  9. Stejskal V., Karalko M., Krbal L. Histopathological findings of diseased ascending aortae with clinicopa- thological correlation – A single-centre study of 160 cases // Pathol. Res. Pract. 2023. V. 246. https://doi.org/10.1016/j.prp.2023.154526
  10. Vapnik J.S., Kim J.B., Isselbacher E.M. et al. Characteristics and outcomes of ascending versus descending thoracic aortic aneurysms // Am. J. Cardiol. 2016. V. 117. № 10. P. 1683–1690. https://doi.org/10.1016/j.amjcard.2016.02.048
  11. Ahmad M.M., Kiani I.A., Ammar K.A. et al. Ascending aortic aneurysm is an inherited disease: A contemporary literature review based on Hill's criteria of specifi- city, strength of association, and biological coherence // Cardiol Rev. 2017. V. 25. № 6. P. 268–278. https://doi.org/10.1097/CRD.0000000000000146
  12. Kucher A.N., Koroleva I.A., Nazarenko M.S. Exploring disparities of atherosclerosis comorbidity with aortic aneurysm // Biomedicines. 2025. V. 13. https://doi.org/10.3390/biomedicines13030593
  13. Collins M.J., Dev V., Strauss B.H. et al. Variation in the histopathological features of patients with ascending aortic aneurysms: A study of 111 surgically excised cases // J. Clin. Pathol. 2008. V. 61. № 4. P. 519–523. https://doi.org/10.1136/jcp.2006.046250
  14. Dolmaci O.B., Klautz R.J.M., Poelmann R.E. et al. Thoracic aortic atherosclerosis in patients with a bicuspid aortic valve; a case-control study // BMC Cardiovasc. Disord. 2023. V. 23. № 1. P. 363. https://doi.org/10.1186/s12872-023-03396-4
  15. Cheung C., Bernardo A.S., Trotter M.W. et al. Ge- neration of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility // Nat. Biotechnol. 2012. V. 30. № 2. P. 165–173. https://doi.org/10.1038/nbt.2107
  16. MacFarlane E.G., Parker S.J., Shin J.Y. et al. Li- neage-specific events underlie aortic root aneurysm pathogenesis in Loeys-Dietz syndrome // J. Clin. Invest. 2019. V. 129. № 2. P. 659–675. https://doi.org/10.1172/JCI123547
  17. Li Y., LeMaire S.A., Shen Y.H. Molecular and cellular dynamics of aortic aneurysms revealed by single-cell transcriptomics // Arterioscler. Thromb. Vasc. Biol. 2021. V. 41. № 11. P. 2671–2680. https://doi.org/10.1161/ATVBAHA.121.315852
  18. Yu L., Zhang J., Gao A. et al. An intersegmental single-cell profile reveals aortic heterogeneity and identifies a novel Malat1+ vascular smooth muscle subtype involved in abdominal aortic aneurysm formation // Signal Transduct. Target Ther. 2022. V. 7. № 1. P. 125 https://doi.org/10.1038/s41392-022-00943-x
  19. Liu X.W., Wang P., Zhang L. et al. Single-cell RNA sequencing and ATAC sequencing identify novel biomarkers for bicuspid aortic valve-associated thoracic aortic aneurysm // Front. Cardiovasc. Med. 2024. V. 11. https://doi.org/10.3389/fcvm.2024.1265378
  20. Weng Y., Lou J., Bao Y. et al. Single-cell RNA sequencing technology revealed the pivotal role of fibroblast heterogeneity in angiotensin II-induced abdominal aortic aneurysms // DNA Cell Biol. 2022. V. 41. № 5. P. 498–520. https://doi.org/10.1089/dna.2021.0923
  21. Gadson P.F. Jr., Dalton M.L., Patterson E. et al. Differential response of mesoderm- and neural crest-derived smooth muscle to TGF-beta1: Regulation of c-myb and alpha1 (I) procollagen genes // Exp. Cell. Res. 1997. V. 230. № 2. P. 169–180. https://doi.org/10.1006/excr.1996.3398
  22. Gao Y.K., Guo R.J., Xu X. et al. A regulator of G protein signaling 5 marked subpopulation of vascular smooth muscle cells is lost during vascular disease // PLoS One. 2022. V. 17. № 3. https://doi.org/10.1371/journal.pone.0265132
  23. Hu Y., Cai Z., He B. Smooth muscle heterogeneity and plasticity in health and aortic aneurysmal disease // Int. J. Mol. Sci. 2023. V. 24. № 14. P. 11701. https://doi.org/10.3390/ijms241411701
  24. Taghizadeh H. Mechanobiology of the arterial tissue from the aortic root to the diaphragm // Med. Eng. Phys. 2021. V. 96. P. 64–70. https://doi.org/10.1016/j.medengphy.2021.09.001
  25. Falk E. Pathogenesis of atherosclerosis // J. Am. Coll. Cardiol. 2006. V. 47. 8 Suppl. P. C7–C12. https://doi.org/10.1016/j.jacc.2005.09.068
  26. Cho M.J., Lee M.R., Park J.G. Aortic aneurysms: Current pathogenesis and therapeutic targets // Exp. Mol. Med. 2023. V. 55. № 12. P. 2519–2530. https://doi.org/10.1038/s12276-023-01130-w
  27. Stejskal V., Karalko M., Smolak P. et al. Medial degeneration and atherosclerosis show discrete variance around the circumference of ascending aorta aneurysms // Virchows. Arch. 2022. V. 481. № 5. P. 731–738. https://doi.org/10.1007/s00428-022-03397-2
  28. Bennett M.R., Sinha S., Owens G.K. Vascular smooth muscle cells in atherosclerosis // Circ. Res. 2016. V. 118. № 4. P. 692–702. https://doi.org/10.1161/CIRCRESAHA.115.306361
  29. Dobnikar L., Taylor A.L., Chappell J. et al. Disease-relevant transcriptional signatures identified in individual smooth muscle cells from healthy mouse vessels // Nat. Commun. 2018. V. 9. № 1. P. 4567. https://doi.org/10.1038/s41467-018-06891-x
  30. Basatemur G.L., Jørgensen H.F., Clarke M.C.H. et al. Vascular smooth muscle cells in atherosclerosis // Nat. Rev. Cardiol. 2019. V. 16. № 12. P. 727–744. https://doi.org/10.1038/s41569-019-0227-9
  31. Grootaert M.O.J., Bennett M.R. Vascular smooth muscle cells in atherosclerosis: time for a re-assessment // Cardiovasc. Res. 2021. V. 117. № 11. P. 2326–2339. https://doi.org/10.1093/cvr/cvab046
  32. Kaw K., Chattopadhyay A., Guan P. et al. Smooth muscle α-actin missense variant promotes atherosclerosis through modulation of intracellular cholesterol in smooth muscle cells // Eur. Heart. J. 2023. V. 44. № 29. P. 2713–2726. https://doi.org/10.1093/eurheartj/ehad373
  33. Dong C.X., Malecki C., Robertson E. et al. Molecular mechanisms in genetic aortopathy-signaling pathways and potential interventions // Int. J. Mol. Sci. 2023. V. 24. № 2. P. 1795. https://doi.org/10.3390/ijms24021795
  34. Gao W.B., Yu H.C., Zhang Y.J. et al. Sichuan da xuexuebao // Yi Xue Ban = J. Sichuan University. Medical science edition. 2023. V. 54. № 3. P. 699–704. https://doi.org/10.12182/20230260101
  35. Van de Pol V., Kurakula K., DeRuiter M.C., Gou- mans M.J. Thoracic aortic aneurysm development in patients with bicuspid aortic valve: What is the role of endothelial cells? // Front. Physiol. 2017. V. 8. P. 938. https://doi.org/10.3389/fphys.2017.00938
  36. Asano K., Cantalupo A., Sedes L., Ramirez F. Pathophysiology and therapeutics of thoracic aortic aneurysm in Marfan syndrome // Biomolecules. 2022. V. 12. № 1. P. 128. https://doi.org/10.3390/biom12010128
  37. Mieremet A., van der Stoel M., Li S. et al. Endothelial dysfunction in Marfan syndrome mice is restored by resveratrol // Sci Rep. 2022. V. 12. № 1. P. 22504. https://doi.org/10.1038/s41598-022-26662-5
  38. Jauhiainen S., Kiema M., Hedman M., Laakkonen J.P. Large vessel cell heterogeneity and plasticity: focus in aortic aneurysms // Arterioscler. Thromb. Vasc. Biol. 2022. V. 42. № 7. P. 811–818. https://doi.org/10.1161/ATVBAHA.121.316237
  39. Sanin V., Schmieder R., Ates S. et al. Population-based screening in children for early diagnosis and treatment of familial hypercholesterolemia: design of the VRONI study // Eur. J. Public. Health. 2022. V. 32. № 3. P. 422–428. https://doi.org/10.1093/eurpub/ckac007
  40. Xu C., Zarins C.K., Glagov S. Aneurysmal and occlusive atherosclerosis of the human abdominal aorta // J. Vasc. Surg. 2001. V. 33. № 1. P. 91–96. https://doi.org/10.1067/mva.2001.109744
  41. Jaffer F.A., O'Donnell C.J., Larson M.G. et al. Age and sex distribution of subclinical aortic atherosclerosis: A magnetic resonance imaging examination of the Framingham Heart Study // Arterioscler. Thromb. Vasc. Biol. 2002. V. 22. № 5. P. 849–854. https://doi.org/10.1161/01.atv.0000012662.29622.00
  42. Kalluri A.S., Vellarikkal S.K., Edelman E.R. et al. Single-cell analysis of the normal mouse aorta reveals functionally distinct endothelial cell populations // Circulation. 2019. V. 140. № 2. P. 147–163. https://doi.org/10.1161/CIRCULATIONAHA.118.038362
  43. Bramel E.E., Espinoza Camejo W.A., Creamer T.J. et al. Intrinsic GATA4 expression sensitizes the aortic root to dilation in a Loeys-Dietz syndrome mouse model // Nat. Cardiovasc. Res. 2024. V. 3. № 12. P. 1468–1481. https://doi.org/10.1038/s44161-024-00562-5
  44. Adelus M.L., Ding J., Tran B.T. et al. Single-cell 'omic profiles of human aortic endothelial cells in vitro and human atherosclerotic lesions ex vivo reveal heterogeneity of endothelial subtype and response to activating perturbations // Elife. 2024. V. 12. https://doi.org/10.7554/eLife.91729
  45. Pedroza A.J., Tashima Y., Shad R. et al. Single-cell transcriptomic profiling of vascular smooth muscle cell phenotype modulation in Marfan syndrome aortic aneurysm // Arterioscler. Thromb. Vasc. Biol. 2020. V. 40. № 9. P. 2195–2211. https://doi.org/10.1161/ATVBAHA.120.314670
  46. Dawson A., Li Y., Li Y. et al. Single-cell analysis of aneurysmal aortic tissue in patients with Marfan syndrome reveals dysfunctional TGF-β signaling // Genes (Basel). 2021. V. 13. № 1. P. 95. https://doi.org/10.3390/genes13010095
  47. Li Y., Ren P., Dawson A. et al. Single-cell transcriptome analysis reveals dynamic cell populations and differential gene expression patterns in control and aneurysmal human aortic tissue // Circulation. 2020. V. 142. № 14. P. 1374–1388. https://doi.org/10.1161/CIRCULATIONAHA.120.046528
  48. Zhang L., Qiu Z., Zheng H. et al. Single cell RNA sequencing reveals the pathogenesis of aortic dissection caused by hypertension and Marfan syndrome // Front. Cell Dev. Biol. 2022. V. 10. https://doi.org/10.3389/fcell.2022.880320
  49. Pedroza A.J., Dalal A.R., Shad R. et al. Embryologic origin influences smooth muscle cell phenotypic mo- dulation signatures in murine Marfan syndrome aortic aneurysm // Arterioscler. Thromb. Vasc. Biol. 2022. V. 42. № 9. P. 1154–1168. https://doi.org/10.1161/ATVBAHA.122.317381
  50. Kaw A., Pedroza A.J., Chattopadhyay A. et al. Mosaicism for the smooth muscle cell (SMC)-specific knock-in of the Acta2 R179C pathogenic variant: Implications for gene editing therapies // J. Mol. Cell. Cardiol. 2022. V. 171. P. 102–104. https://doi.org/10.1016/j.yjmcc.2022.07.004
  51. Zhang C., Li Y., Chakraborty A. et al. Aortic stress activates an adaptive program in thoracic aortic smooth muscle cells that maintains aortic strength and protects against aneurysm and dissection in mice // Arterioscler. Thromb. Vasc. Biol. 2023. V. 43. № 2. P. 234–252. https://doi.org/10.1161/ATVBAHA.122.318135
  52. Davis F.M., Tsoi L.C., Melvin W.J. et al. Inhibition of macrophage histone demethylase JMJD3 protects against abdominal aortic aneurysms // J. Exp. Med. 2021. V. 218. № 6. https://doi.org/10.1084/jem.20201839
  53. Zhao S., Cang H., Liu Y. et al. Integrated analysis of bulk RNA-seq and single-cell RNA-seq reveals the function of pyrocytosis in the pathogenesis of abdo- minal aortic aneurysm // Aging (Albany NY). 2023. V. 15. № 24. P. 15287–15323. https://doi.org/10.18632/aging.205350
  54. Yang H., Zhou T., Stranz A. et al. Single-cell RNA sequencing reveals heterogeneity of vascular cells in early stage murine abdominal aortic aneurysm-Brief report // Arterioscler. Thromb. Vasc. Biol. 2021. V. 41. № 3. P. 1158–1166. https://doi.org/10.1161/ATVBAHA.120.315607
  55. Liu Y., Wang X., Wang H., Hu T. Identification of key genes and pathways in abdominal aortic aneurysm by integrated bioinformatics analysis // J. Int. Med. Res. 2020. V. 48. № 4. https://doi.org/10.1177/0300060519894437
  56. Härdtner C., Kumar A., Ehlert C.A. et al. A comparative gene expression matrix in Apoe-deficient mice identifies unique and atherosclerotic disease stage-specific gene regulation patterns in monocytes and macrophages // Atherosclerosis. 2023. V. 371. P. 1–13. https://doi.org/10.1016/j.atherosclerosis.2023.03.006
  57. Mocci G., Sukhavasi K., Örd T. et al. Single-cell gene-regulatory networks of advanced symptoma- tic atherosclerosis // Circ. Res. 2024. V. 134. № 11. P. 1405–1423. https://doi.org/10.1161/CIRCRESAHA.123.323184
  58. Depuydt M.A.C., Prange K.H.M., Slenders L. et al. Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics // Circ. Res. 2020. V. 127. № 11. P. 1437–1455. https://doi.org/10.1161/CIRCRESAHA.120.316770
  59. Wirka R.C., Wagh D., Paik D.T. et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis // Nat. Med. 2019. V. 25. № 8. P. 1280–1289. https://doi.org/10.1038/s41591-019-0512-5
  60. Alsaigh T., Evans D., Frankel D., Torkamani A. Decoding the transcriptome of calcified atherosclero- tic plaque at single-cell resolution // Commun. Biol. 2022. V. 5. № 1. P. 1084. https://doi.org/10.1038/s42003-022-04056-7
  61. Wen J., Ling R., Chen R. et al. Diversity of arterial cell and phenotypic heterogeneity induced by high-fat and high-cholesterol diet // Front. Cell. Dev. Biol. 2023. V. 11. https://doi.org/10.3389/fcell.2023.971091
  62. Brandt K.J., Burger F., Baptista D. et al. Single-cell analysis uncovers osteoblast factor growth differentiation factor 10 as mediator of vascular smooth muscle cell phenotypic modulation associated with plaque rupture in human carotid artery disease // Int. J. Mol. Sci. 2022. V. 23. № 3. P. 1796. https://doi.org/10.3390/ijms23031796
  63. Zhao G., Lu H., Liu Y. et al. Single-cell transcripto- mics reveals endothelial plasticity during diabetic atherogenesis // Front. Cell Dev. Biol. 2021. V. 9. https://doi.org/10.3389/fcell.2021.689469
  64. Andueza A., Kumar S., Kim J. et al. Endothelial reprogramming by disturbed flow revealed by single-cell RNA and chromatin accessibility study // Cell Rep. 2020. V. 33. № 11. https://doi.org/10.1016/j.celrep.2020.108491
  65. Liu S., Wu J., Banerjee O. et al. Big data analytics and scRNA-seq in human aortic aneurysms and dissections: Role of endothelial MerTK // Theranostics. 2025. V. 15. № 1. P. 202–215. https://doi.org/10.7150/thno.103851
  66. Winkels H., Ehinger E., Vassallo M. et al. Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry // Circ. Res. 2018. V. 122. № 12. P. 1675–1688. https://doi.org/10.1161/CIRCRESAHA.117.312513
  67. Zernecke A., Erhard F., Weinberger T. et al. Integrated single-cell analysis-based classification of vascular mononuclear phagocytes in mouse and human atherosclerosis // Cardiovasc. Res. 2023. V. 119. № 8. P. 1676–1689. https://doi.org/10.1093/cvr/cvac161
  68. Feng W., Chen L., Nguyen P.K. et al. Single cell analysis of endothelial cells identified organ-specific molecular signatures and heart-specific cell populations and molecular features // Front. Cardiovasc. Med. 2019. V. 6. P. 165. https://doi.org/10.3389/fcvm.2019.00165
  69. Fernandez D.M., Rahman A.H., Fernandez N.F. et al. Single-cell immune landscape of human atherosclerotic plaques // Nat. Med. 2019. V. 25. № 10. P. 1576–1588. https://doi.org/10.1038/s41591-019-0590-4
  70. Evrard S.M., Lecce L., Michelis K.C. et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability // Nat. Commun. 2016. V. 7. P. 11853. https://doi.org/10.1038/ncomms11853
  71. Hadi T., Boytard L., Silvestro M. et al. Macrophage-derived netrin-1 promotes abdominal aortic aneurysm formation by activating Mmp3 in vascular smooth muscle cells // Nat. Commun. 2018. V. 9. P. 5022. https://doi.org/10.1038/s41467-018-07495-1
  72. Chowdhury R.R., D'Addabbo J., Huang X. et al. Human coronary plaque T cells are clonal and cross-react to virus and self // Circ. Res. 2022. V. 130. № 10. P. 1510–1530. https://doi.org/10.1161/CIRCRESAHA.121.320090
  73. Paone S., Baxter A.A., Hulett M.D., Poon I.K.H. Endothelial cell apoptosis and the role of endothelial cell-derived extracellular vesicles in the progression of atherosclerosis // Cell. Mol. Life Sci. 2019. V. 76. № 6. P. 1093–1106. https://doi.org/10.1007/s00018-018-2983-9
  74. Kwartler C.S., Pedroza A.J., Kaw A. et al. Nuclear smooth muscle α-actin participates in vascular smooth muscle cell differentiation // Nat. Cardiovasc. Res. 2023. V. 2. № 10. P. 937–955. https://doi.org/10.1038/s44161-023-00337-4
  75. Guo D.C., Papke C.L., Tran-Fadulu V. et al. Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease // Am. J. Hum. Genet. 2009. V. 84. № 5. P. 617–627. https://doi.org/10.1016/j.ajhg.2009.04.007
  76. Zhang Z., Wu M., Yao L. et al. Trem2/Tyrobp signaling protects against aortic dissection and rupture by inhibiting macrophage activation in mice // Arterioscler. Thromb. Vasc. Biol. 2025. V. 45. № 1. P. 119–135. https://doi.org/10.1161/ATVBAHA.124.321429
  77. Ma Y., Wu S., Lai J. et al. Exploring the comorbidity mechanisms between atherosclerosis and Hashimoto's thyroiditis based on microarray and single-cell sequen- cing analysis // Sci. Rep. 2025. V. 15. № 1. P. 1792. https://doi.org/10.1038/s41598-025-85112-0

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences