Unveiling the Molecular Basis of Comorbidity of Atherosclerosis and Aortic Aneurysm at the Cellular and Molecular Levels
- Authors: Kucher A.N.1, Nazarenko M.S.1
-
Affiliations:
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences
- Issue: Vol 61, No 7 (2025)
- Pages: 29-48
- Section: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://medjrf.com/0016-6758/article/view/693613
- DOI: https://doi.org/10.31857/S0016675825070028
- ID: 693613
Cite item
Abstract
Aortic aneurysm (AA) and atherosclerosis (AS) are characterized by ambiguous comorbid relationships between them. This review discusses the molecular mechanisms of formation of these pathologies caused by heterogeneity, plasticity, intercellular interactions, embryonic origin and regional specificity of arterial cells, revealed using the approach of single-cell transcriptomics in humans and in model animals. The importance of interplay of genetic and environmental factors that determine the functional state of blood vessels and the development of pathology through dynamic changes in the cellular composition of arteries within the framework of an ontogenetically regulated spatio-temporal continuum is emphasized, which creates conditions for the formation of comorbidity between diseases. Understanding the key molecular mechanisms underlying the comorbidity of AA and AS is important for the development of new therapeutic strategies for these pathological conditions.
About the authors
A. N. Kucher
Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences
Author for correspondence.
Email: maria.nazarenko@medgenetics.ru
Tomsk, 634050 Russia
M. S. Nazarenko
Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences
Email: maria.nazarenko@medgenetics.ru
Tomsk, 634050 Russia
References
- Кучер А.Н., Королёва Ю.А., Назаренко М.С. Эпидемиологическая основа коморбидности аневризмы аорты и атеросклероза сосудов // Бюл. cибирской медицины. 2025. Т. 24. № 1. https://doi.org/10.20538/1682-0363-2025-1-180-192
- Isselbacher E.M., Preventza O., Hamilton Black J., 3rd et al. ACC/AHA Guideline for the diagnosis and management of aortic disease: A report of the American Heart Association/American College of Cardiology Joint Committee on clinical practice guidelines // Circulation. 2022. V. 146. № 24. P. e334–e482. https://doi.org/10.1161/CIR.0000000000001106
- Gyftopoulos A., Ziganshin B.A., Elefteriades J.A., Ochoa Chaar C.I. Comparison of genes associated with thoracic and abdominal aortic aneurysms // Aorta (Stamford, Conn.). 2023. V. 11. № 3. P. 125–134. https://doi.org/10.1055/s-0043-57266
- VanderLaan P.A., Reardon C.A., Getz G.S. Site spe- cificity of atherosclerosis: Site-selective responses to atherosclerotic modulators // Arterioscler. Thromb. Vasc. Biol. 2004. V. 24. № 1. P. 12–22. https://doi.org/10.1161/01.ATV.0000105054.43931.f0
- Dalager S., Paaske W.P., Kristensen I.B. et al. Artery-related differences in atherosclerosis expression: Implications for atherogenesis and dynamics in intima-media thickness // Stroke. 2007. V. 38. № 10. P. 2698–2705. https://doi.org/10.1161/STROKEAHA.107.486480
- Achneck H., Modi B., Shaw C. et al. Ascending thoracic aneurysms are associated with decreased systemic atherosclerosis // Chest. 2005. V. 128. № 3. P. 1580–1586. https://doi.org/10.1378/chest.128.3.1580
- Grewal N., Dolmaci O., Jansen E. et al. Are acute type A aortic dissections atherosclerotic? // Front. Cardiovasc. Med. 2023. V. 9. https://doi.org/10.3389/fcvm.2022.1032755
- Zafar M.A., Ziganshin B.A., Li Y. et al. “Big Data” analyses underlie clinical discoveries at the aortic institute // Yale J. Biol. Med. 2023. V. 96. № 3. P. 427–440. https://doi.org/10.59249/LNDZ2964
- Stejskal V., Karalko M., Krbal L. Histopathological findings of diseased ascending aortae with clinicopa- thological correlation – A single-centre study of 160 cases // Pathol. Res. Pract. 2023. V. 246. https://doi.org/10.1016/j.prp.2023.154526
- Vapnik J.S., Kim J.B., Isselbacher E.M. et al. Characteristics and outcomes of ascending versus descending thoracic aortic aneurysms // Am. J. Cardiol. 2016. V. 117. № 10. P. 1683–1690. https://doi.org/10.1016/j.amjcard.2016.02.048
- Ahmad M.M., Kiani I.A., Ammar K.A. et al. Ascending aortic aneurysm is an inherited disease: A contemporary literature review based on Hill's criteria of specifi- city, strength of association, and biological coherence // Cardiol Rev. 2017. V. 25. № 6. P. 268–278. https://doi.org/10.1097/CRD.0000000000000146
- Kucher A.N., Koroleva I.A., Nazarenko M.S. Exploring disparities of atherosclerosis comorbidity with aortic aneurysm // Biomedicines. 2025. V. 13. https://doi.org/10.3390/biomedicines13030593
- Collins M.J., Dev V., Strauss B.H. et al. Variation in the histopathological features of patients with ascending aortic aneurysms: A study of 111 surgically excised cases // J. Clin. Pathol. 2008. V. 61. № 4. P. 519–523. https://doi.org/10.1136/jcp.2006.046250
- Dolmaci O.B., Klautz R.J.M., Poelmann R.E. et al. Thoracic aortic atherosclerosis in patients with a bicuspid aortic valve; a case-control study // BMC Cardiovasc. Disord. 2023. V. 23. № 1. P. 363. https://doi.org/10.1186/s12872-023-03396-4
- Cheung C., Bernardo A.S., Trotter M.W. et al. Ge- neration of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility // Nat. Biotechnol. 2012. V. 30. № 2. P. 165–173. https://doi.org/10.1038/nbt.2107
- MacFarlane E.G., Parker S.J., Shin J.Y. et al. Li- neage-specific events underlie aortic root aneurysm pathogenesis in Loeys-Dietz syndrome // J. Clin. Invest. 2019. V. 129. № 2. P. 659–675. https://doi.org/10.1172/JCI123547
- Li Y., LeMaire S.A., Shen Y.H. Molecular and cellular dynamics of aortic aneurysms revealed by single-cell transcriptomics // Arterioscler. Thromb. Vasc. Biol. 2021. V. 41. № 11. P. 2671–2680. https://doi.org/10.1161/ATVBAHA.121.315852
- Yu L., Zhang J., Gao A. et al. An intersegmental single-cell profile reveals aortic heterogeneity and identifies a novel Malat1+ vascular smooth muscle subtype involved in abdominal aortic aneurysm formation // Signal Transduct. Target Ther. 2022. V. 7. № 1. P. 125 https://doi.org/10.1038/s41392-022-00943-x
- Liu X.W., Wang P., Zhang L. et al. Single-cell RNA sequencing and ATAC sequencing identify novel biomarkers for bicuspid aortic valve-associated thoracic aortic aneurysm // Front. Cardiovasc. Med. 2024. V. 11. https://doi.org/10.3389/fcvm.2024.1265378
- Weng Y., Lou J., Bao Y. et al. Single-cell RNA sequencing technology revealed the pivotal role of fibroblast heterogeneity in angiotensin II-induced abdominal aortic aneurysms // DNA Cell Biol. 2022. V. 41. № 5. P. 498–520. https://doi.org/10.1089/dna.2021.0923
- Gadson P.F. Jr., Dalton M.L., Patterson E. et al. Differential response of mesoderm- and neural crest-derived smooth muscle to TGF-beta1: Regulation of c-myb and alpha1 (I) procollagen genes // Exp. Cell. Res. 1997. V. 230. № 2. P. 169–180. https://doi.org/10.1006/excr.1996.3398
- Gao Y.K., Guo R.J., Xu X. et al. A regulator of G protein signaling 5 marked subpopulation of vascular smooth muscle cells is lost during vascular disease // PLoS One. 2022. V. 17. № 3. https://doi.org/10.1371/journal.pone.0265132
- Hu Y., Cai Z., He B. Smooth muscle heterogeneity and plasticity in health and aortic aneurysmal disease // Int. J. Mol. Sci. 2023. V. 24. № 14. P. 11701. https://doi.org/10.3390/ijms241411701
- Taghizadeh H. Mechanobiology of the arterial tissue from the aortic root to the diaphragm // Med. Eng. Phys. 2021. V. 96. P. 64–70. https://doi.org/10.1016/j.medengphy.2021.09.001
- Falk E. Pathogenesis of atherosclerosis // J. Am. Coll. Cardiol. 2006. V. 47. 8 Suppl. P. C7–C12. https://doi.org/10.1016/j.jacc.2005.09.068
- Cho M.J., Lee M.R., Park J.G. Aortic aneurysms: Current pathogenesis and therapeutic targets // Exp. Mol. Med. 2023. V. 55. № 12. P. 2519–2530. https://doi.org/10.1038/s12276-023-01130-w
- Stejskal V., Karalko M., Smolak P. et al. Medial degeneration and atherosclerosis show discrete variance around the circumference of ascending aorta aneurysms // Virchows. Arch. 2022. V. 481. № 5. P. 731–738. https://doi.org/10.1007/s00428-022-03397-2
- Bennett M.R., Sinha S., Owens G.K. Vascular smooth muscle cells in atherosclerosis // Circ. Res. 2016. V. 118. № 4. P. 692–702. https://doi.org/10.1161/CIRCRESAHA.115.306361
- Dobnikar L., Taylor A.L., Chappell J. et al. Disease-relevant transcriptional signatures identified in individual smooth muscle cells from healthy mouse vessels // Nat. Commun. 2018. V. 9. № 1. P. 4567. https://doi.org/10.1038/s41467-018-06891-x
- Basatemur G.L., Jørgensen H.F., Clarke M.C.H. et al. Vascular smooth muscle cells in atherosclerosis // Nat. Rev. Cardiol. 2019. V. 16. № 12. P. 727–744. https://doi.org/10.1038/s41569-019-0227-9
- Grootaert M.O.J., Bennett M.R. Vascular smooth muscle cells in atherosclerosis: time for a re-assessment // Cardiovasc. Res. 2021. V. 117. № 11. P. 2326–2339. https://doi.org/10.1093/cvr/cvab046
- Kaw K., Chattopadhyay A., Guan P. et al. Smooth muscle α-actin missense variant promotes atherosclerosis through modulation of intracellular cholesterol in smooth muscle cells // Eur. Heart. J. 2023. V. 44. № 29. P. 2713–2726. https://doi.org/10.1093/eurheartj/ehad373
- Dong C.X., Malecki C., Robertson E. et al. Molecular mechanisms in genetic aortopathy-signaling pathways and potential interventions // Int. J. Mol. Sci. 2023. V. 24. № 2. P. 1795. https://doi.org/10.3390/ijms24021795
- Gao W.B., Yu H.C., Zhang Y.J. et al. Sichuan da xuexuebao // Yi Xue Ban = J. Sichuan University. Medical science edition. 2023. V. 54. № 3. P. 699–704. https://doi.org/10.12182/20230260101
- Van de Pol V., Kurakula K., DeRuiter M.C., Gou- mans M.J. Thoracic aortic aneurysm development in patients with bicuspid aortic valve: What is the role of endothelial cells? // Front. Physiol. 2017. V. 8. P. 938. https://doi.org/10.3389/fphys.2017.00938
- Asano K., Cantalupo A., Sedes L., Ramirez F. Pathophysiology and therapeutics of thoracic aortic aneurysm in Marfan syndrome // Biomolecules. 2022. V. 12. № 1. P. 128. https://doi.org/10.3390/biom12010128
- Mieremet A., van der Stoel M., Li S. et al. Endothelial dysfunction in Marfan syndrome mice is restored by resveratrol // Sci Rep. 2022. V. 12. № 1. P. 22504. https://doi.org/10.1038/s41598-022-26662-5
- Jauhiainen S., Kiema M., Hedman M., Laakkonen J.P. Large vessel cell heterogeneity and plasticity: focus in aortic aneurysms // Arterioscler. Thromb. Vasc. Biol. 2022. V. 42. № 7. P. 811–818. https://doi.org/10.1161/ATVBAHA.121.316237
- Sanin V., Schmieder R., Ates S. et al. Population-based screening in children for early diagnosis and treatment of familial hypercholesterolemia: design of the VRONI study // Eur. J. Public. Health. 2022. V. 32. № 3. P. 422–428. https://doi.org/10.1093/eurpub/ckac007
- Xu C., Zarins C.K., Glagov S. Aneurysmal and occlusive atherosclerosis of the human abdominal aorta // J. Vasc. Surg. 2001. V. 33. № 1. P. 91–96. https://doi.org/10.1067/mva.2001.109744
- Jaffer F.A., O'Donnell C.J., Larson M.G. et al. Age and sex distribution of subclinical aortic atherosclerosis: A magnetic resonance imaging examination of the Framingham Heart Study // Arterioscler. Thromb. Vasc. Biol. 2002. V. 22. № 5. P. 849–854. https://doi.org/10.1161/01.atv.0000012662.29622.00
- Kalluri A.S., Vellarikkal S.K., Edelman E.R. et al. Single-cell analysis of the normal mouse aorta reveals functionally distinct endothelial cell populations // Circulation. 2019. V. 140. № 2. P. 147–163. https://doi.org/10.1161/CIRCULATIONAHA.118.038362
- Bramel E.E., Espinoza Camejo W.A., Creamer T.J. et al. Intrinsic GATA4 expression sensitizes the aortic root to dilation in a Loeys-Dietz syndrome mouse model // Nat. Cardiovasc. Res. 2024. V. 3. № 12. P. 1468–1481. https://doi.org/10.1038/s44161-024-00562-5
- Adelus M.L., Ding J., Tran B.T. et al. Single-cell 'omic profiles of human aortic endothelial cells in vitro and human atherosclerotic lesions ex vivo reveal heterogeneity of endothelial subtype and response to activating perturbations // Elife. 2024. V. 12. https://doi.org/10.7554/eLife.91729
- Pedroza A.J., Tashima Y., Shad R. et al. Single-cell transcriptomic profiling of vascular smooth muscle cell phenotype modulation in Marfan syndrome aortic aneurysm // Arterioscler. Thromb. Vasc. Biol. 2020. V. 40. № 9. P. 2195–2211. https://doi.org/10.1161/ATVBAHA.120.314670
- Dawson A., Li Y., Li Y. et al. Single-cell analysis of aneurysmal aortic tissue in patients with Marfan syndrome reveals dysfunctional TGF-β signaling // Genes (Basel). 2021. V. 13. № 1. P. 95. https://doi.org/10.3390/genes13010095
- Li Y., Ren P., Dawson A. et al. Single-cell transcriptome analysis reveals dynamic cell populations and differential gene expression patterns in control and aneurysmal human aortic tissue // Circulation. 2020. V. 142. № 14. P. 1374–1388. https://doi.org/10.1161/CIRCULATIONAHA.120.046528
- Zhang L., Qiu Z., Zheng H. et al. Single cell RNA sequencing reveals the pathogenesis of aortic dissection caused by hypertension and Marfan syndrome // Front. Cell Dev. Biol. 2022. V. 10. https://doi.org/10.3389/fcell.2022.880320
- Pedroza A.J., Dalal A.R., Shad R. et al. Embryologic origin influences smooth muscle cell phenotypic mo- dulation signatures in murine Marfan syndrome aortic aneurysm // Arterioscler. Thromb. Vasc. Biol. 2022. V. 42. № 9. P. 1154–1168. https://doi.org/10.1161/ATVBAHA.122.317381
- Kaw A., Pedroza A.J., Chattopadhyay A. et al. Mosaicism for the smooth muscle cell (SMC)-specific knock-in of the Acta2 R179C pathogenic variant: Implications for gene editing therapies // J. Mol. Cell. Cardiol. 2022. V. 171. P. 102–104. https://doi.org/10.1016/j.yjmcc.2022.07.004
- Zhang C., Li Y., Chakraborty A. et al. Aortic stress activates an adaptive program in thoracic aortic smooth muscle cells that maintains aortic strength and protects against aneurysm and dissection in mice // Arterioscler. Thromb. Vasc. Biol. 2023. V. 43. № 2. P. 234–252. https://doi.org/10.1161/ATVBAHA.122.318135
- Davis F.M., Tsoi L.C., Melvin W.J. et al. Inhibition of macrophage histone demethylase JMJD3 protects against abdominal aortic aneurysms // J. Exp. Med. 2021. V. 218. № 6. https://doi.org/10.1084/jem.20201839
- Zhao S., Cang H., Liu Y. et al. Integrated analysis of bulk RNA-seq and single-cell RNA-seq reveals the function of pyrocytosis in the pathogenesis of abdo- minal aortic aneurysm // Aging (Albany NY). 2023. V. 15. № 24. P. 15287–15323. https://doi.org/10.18632/aging.205350
- Yang H., Zhou T., Stranz A. et al. Single-cell RNA sequencing reveals heterogeneity of vascular cells in early stage murine abdominal aortic aneurysm-Brief report // Arterioscler. Thromb. Vasc. Biol. 2021. V. 41. № 3. P. 1158–1166. https://doi.org/10.1161/ATVBAHA.120.315607
- Liu Y., Wang X., Wang H., Hu T. Identification of key genes and pathways in abdominal aortic aneurysm by integrated bioinformatics analysis // J. Int. Med. Res. 2020. V. 48. № 4. https://doi.org/10.1177/0300060519894437
- Härdtner C., Kumar A., Ehlert C.A. et al. A comparative gene expression matrix in Apoe-deficient mice identifies unique and atherosclerotic disease stage-specific gene regulation patterns in monocytes and macrophages // Atherosclerosis. 2023. V. 371. P. 1–13. https://doi.org/10.1016/j.atherosclerosis.2023.03.006
- Mocci G., Sukhavasi K., Örd T. et al. Single-cell gene-regulatory networks of advanced symptoma- tic atherosclerosis // Circ. Res. 2024. V. 134. № 11. P. 1405–1423. https://doi.org/10.1161/CIRCRESAHA.123.323184
- Depuydt M.A.C., Prange K.H.M., Slenders L. et al. Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics // Circ. Res. 2020. V. 127. № 11. P. 1437–1455. https://doi.org/10.1161/CIRCRESAHA.120.316770
- Wirka R.C., Wagh D., Paik D.T. et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis // Nat. Med. 2019. V. 25. № 8. P. 1280–1289. https://doi.org/10.1038/s41591-019-0512-5
- Alsaigh T., Evans D., Frankel D., Torkamani A. Decoding the transcriptome of calcified atherosclero- tic plaque at single-cell resolution // Commun. Biol. 2022. V. 5. № 1. P. 1084. https://doi.org/10.1038/s42003-022-04056-7
- Wen J., Ling R., Chen R. et al. Diversity of arterial cell and phenotypic heterogeneity induced by high-fat and high-cholesterol diet // Front. Cell. Dev. Biol. 2023. V. 11. https://doi.org/10.3389/fcell.2023.971091
- Brandt K.J., Burger F., Baptista D. et al. Single-cell analysis uncovers osteoblast factor growth differentiation factor 10 as mediator of vascular smooth muscle cell phenotypic modulation associated with plaque rupture in human carotid artery disease // Int. J. Mol. Sci. 2022. V. 23. № 3. P. 1796. https://doi.org/10.3390/ijms23031796
- Zhao G., Lu H., Liu Y. et al. Single-cell transcripto- mics reveals endothelial plasticity during diabetic atherogenesis // Front. Cell Dev. Biol. 2021. V. 9. https://doi.org/10.3389/fcell.2021.689469
- Andueza A., Kumar S., Kim J. et al. Endothelial reprogramming by disturbed flow revealed by single-cell RNA and chromatin accessibility study // Cell Rep. 2020. V. 33. № 11. https://doi.org/10.1016/j.celrep.2020.108491
- Liu S., Wu J., Banerjee O. et al. Big data analytics and scRNA-seq in human aortic aneurysms and dissections: Role of endothelial MerTK // Theranostics. 2025. V. 15. № 1. P. 202–215. https://doi.org/10.7150/thno.103851
- Winkels H., Ehinger E., Vassallo M. et al. Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry // Circ. Res. 2018. V. 122. № 12. P. 1675–1688. https://doi.org/10.1161/CIRCRESAHA.117.312513
- Zernecke A., Erhard F., Weinberger T. et al. Integrated single-cell analysis-based classification of vascular mononuclear phagocytes in mouse and human atherosclerosis // Cardiovasc. Res. 2023. V. 119. № 8. P. 1676–1689. https://doi.org/10.1093/cvr/cvac161
- Feng W., Chen L., Nguyen P.K. et al. Single cell analysis of endothelial cells identified organ-specific molecular signatures and heart-specific cell populations and molecular features // Front. Cardiovasc. Med. 2019. V. 6. P. 165. https://doi.org/10.3389/fcvm.2019.00165
- Fernandez D.M., Rahman A.H., Fernandez N.F. et al. Single-cell immune landscape of human atherosclerotic plaques // Nat. Med. 2019. V. 25. № 10. P. 1576–1588. https://doi.org/10.1038/s41591-019-0590-4
- Evrard S.M., Lecce L., Michelis K.C. et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability // Nat. Commun. 2016. V. 7. P. 11853. https://doi.org/10.1038/ncomms11853
- Hadi T., Boytard L., Silvestro M. et al. Macrophage-derived netrin-1 promotes abdominal aortic aneurysm formation by activating Mmp3 in vascular smooth muscle cells // Nat. Commun. 2018. V. 9. P. 5022. https://doi.org/10.1038/s41467-018-07495-1
- Chowdhury R.R., D'Addabbo J., Huang X. et al. Human coronary plaque T cells are clonal and cross-react to virus and self // Circ. Res. 2022. V. 130. № 10. P. 1510–1530. https://doi.org/10.1161/CIRCRESAHA.121.320090
- Paone S., Baxter A.A., Hulett M.D., Poon I.K.H. Endothelial cell apoptosis and the role of endothelial cell-derived extracellular vesicles in the progression of atherosclerosis // Cell. Mol. Life Sci. 2019. V. 76. № 6. P. 1093–1106. https://doi.org/10.1007/s00018-018-2983-9
- Kwartler C.S., Pedroza A.J., Kaw A. et al. Nuclear smooth muscle α-actin participates in vascular smooth muscle cell differentiation // Nat. Cardiovasc. Res. 2023. V. 2. № 10. P. 937–955. https://doi.org/10.1038/s44161-023-00337-4
- Guo D.C., Papke C.L., Tran-Fadulu V. et al. Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease // Am. J. Hum. Genet. 2009. V. 84. № 5. P. 617–627. https://doi.org/10.1016/j.ajhg.2009.04.007
- Zhang Z., Wu M., Yao L. et al. Trem2/Tyrobp signaling protects against aortic dissection and rupture by inhibiting macrophage activation in mice // Arterioscler. Thromb. Vasc. Biol. 2025. V. 45. № 1. P. 119–135. https://doi.org/10.1161/ATVBAHA.124.321429
- Ma Y., Wu S., Lai J. et al. Exploring the comorbidity mechanisms between atherosclerosis and Hashimoto's thyroiditis based on microarray and single-cell sequen- cing analysis // Sci. Rep. 2025. V. 15. № 1. P. 1792. https://doi.org/10.1038/s41598-025-85112-0
Supplementary files
