Diversity and evolution of the repetitive element repertoire in two subspecies of honey bee Apis mellifera
- Authors: Lebedev E.E.1, Panyushev N.V.2, Adonin L.S.3
-
Affiliations:
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal medical and biological agency
- Bioinformatics Institute
- Bonch-Bruevich St. Petersburg State University of Telecommunications
- Issue: Vol 61, No 7 (2025)
- Pages: 49-60
- Section: МОЛЕКУЛЯРНАЯ ГЕНЕТИКА
- URL: https://medjrf.com/0016-6758/article/view/693614
- DOI: https://doi.org/10.31857/S0016675825070035
- ID: 693614
Cite item
Abstract
The present study attempts to determine the contribution of repetitive DNA sequences to the formation of social structures in Apis mellifera honeybees. Despite progress in understanding the molecular basis of caste formation, particularly related to the Notch signaling pathway, the identification of genome-specific cis-regulatory elements remains incomplete. The present work focuses on characterizing the landscape of repetitive elements in the genomes of two honeybee subspecies, A. m. mellifera and A. m. ligustica. The study revealed that the increased copy number of mobile genetic elements in A. m. ligustica is a significant difference between the two subspecies. Furthermore, differentially expressed repetitive elements with the potential for cis-regulatory functions were identified. Concurrently, the analysis of the transcriptome showed minimal differences in the expression of mobile elements during caste differentiation, a fundamental process in the eusocial organisation of bees. Furthermore, the analysis of transposon divergence between subspecies indicated consistent changes in their repeat status correlating with time of origin. Taken together, the findings indicate a potential role of repetitive elements in the acquisition of new regulatory functions, which opens new perspectives for understanding the molecular mechanisms of honey bee social behaviour.
About the authors
E. E. Lebedev
Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal medical and biological agency
Email: mainsalta@gmail.com
Moscow, 119121 Russia
N. V. Panyushev
Bioinformatics Institute
Email: mainsalta@gmail.com
Saint Petersburg, 197342 Russia
L. S. Adonin
Bonch-Bruevich St. Petersburg State University of Telecommunications
Author for correspondence.
Email: leo.adonin@gmail.com
Saint Petersburg, 193232 Russia
References
- Aizen M.A., Garibaldi L.A., Cunningham S.A., Klein A.M. How much does agriculture depend on pollinators? Lessons from long-term trends in crop production // Ann. Bot. 2009. V. 103. № 9. P. 1579–1588. https://doi.org/10.1093/aob/mcp076
- Christmann S. Do we realize the full impact of pollinator loss on other ecosystem services and the challenges for any restoration in terrestrial areas? // Restoration Ecology. 2019. V. 27. № 4. P. 720–725. https://doi.org/10.1111/rec.12950
- Patel V., Pauli N., Biggs E. et al. Why bees are critical for achieving sustainable development // Ambio. 2021. V. 50. № 1. P. 49–59. https://doi.org/10.1007/s13280-020-01333-9
- Dangles O., Casas J. Ecosystem services provided by insects for achieving sustainable development goals // Ecosystem Services. 2019. V. 35. P. 109–115. https://doi.org/10.1016/j.ecoser.2018.12.002
- Kohno H., Kubo T. Genetics in the honey bee: Achievements and prospects toward the functional analysis of molecular and neural mechanisms underlying social behaviors: 10 // Insects. 2019. V. 10. № 10. https://doi.org/10.3390/insects10100348
- Wilson E.O., Hölldobler B. Eusociality: Origin and consequences // Proc. Natl Acad. Sci. USA. 2005. V. 102. № 38. P. 13367–13371. https://doi.org/10.1073/pnas.0505858102
- Da Silva J. Life history and the transitions to eusociality in the hymenoptera // Front. Ecol. and Evol. 2021. V. 9.
- Ashby R., Forêt S., Searle I., Maleszka R. MicroRNAs in honey bee caste determination // Sci. Rep. 2016. V. 6. https://doi.org/10.1038/srep18794
- Alaux C., Sinha S., Hasadsri L. et al. Honey bee aggression supports a link between gene regulation and behavioral evolution // Proc. Natl Acad. Sci. USA. 2009. V. 106. № 36. P. 15400–15405. https://doi.org/10.1073/pnas.0907043106
- Greenberg J.K., Xia J., Zhou X. et al. Behavioral plasticity in honey bees is associated with differences in brain microRNA transcriptome: 6 // Genes Brain Behav. 2012. V. 11. № 6. P. 660–670. https://doi.org/10.1111/j.1601-183X.2012.00782.x
- Eyer M., Dainat B., Neumann P., Dietemann V. Social regulation of ageing by young workers in the honey bee, Apis mellifera // Exp. Gerontol. 2017. V. 87. Pt. A. P. 84–91. https://doi.org/10.1016/j.exger.2016.11.006
- De Paula Junior D.E., de Oliveira M.T., Brusca- din J.J. Caste-specific gene expression underlying the differential adult brain development in the honeybee Apis mellifera // Insect Mol. Biol. 2021. V. 30. № 1. P. 42–56. https://doi.org/10.1111/imb.12671
- Wang M., Xiao Y., Li Y., Wang X. RNA m6A Modification functions in larval development and caste differentiation in honeybee (Apis mellifera): 1 // Cell Rep. 2021. V. 34. № 1. https://doi.org/10.1016/j.celrep.2020.108580
- Yokoi K., Wakamiya T., Bono H. Meta-analysis of the public RNA-Seq data of the western honeybee Apis mellifera to construct reference transcriptome data // Insects. 2022. V. 13. № 10. https://doi.org/10.3390/insects13100931
- Brenman-Suttner D., Zayed A. An integrative genomic toolkit for studying the genetic, evolutionary, and molecular underpinnings of eusociality in insects // Curr. Opin. Insect Sci. 2024. V. 65. https://doi.org/10.1016/j.cois.2024.101231
- Smutin D., Taldaev A., Lebedev E., Adonin L. Shotgun metagenomics reveals minor micro“bee”omes diversity defining differences between larvae and pupae brood combs: 2 // Int. J. Mol. Sci. 2024. V. 25. № 2. https://doi.org/10.3390/ijms25020741
- Robinson S.D., Schendel V., Schroeder C.I. Intra-colony venom diversity contributes to maintaining eusociality in a cooperatively breeding ant // BMC Biol. 2023. V. 21. № 1. P. 5. https://doi.org/10.1186/s12915-022-01507-9
- Kreider J.J., Pen I. The evolution of eusociality: Kin selection theory, division of labour models, and evo-devo explanations // EcoEvoRxiv. 2022.
- Mikhailova A.A., Rinke S., Harrison M.C. Genomic signatures of eusocial evolution in insects // Curr. Opin. Insect Sci. 2024. V. 61. https://doi.org/10.1016/j.cois.2023.101136
- Gregory T.R., Nicol J.A., Tamm H. Eukaryotic genome size databases // Nucl. Acids Res. 2007. V. 35. P. D332–D338. https://doi.org/10.1093/nar/gkl828
- Petersen M., Armisen D., Gibbs R.A. Diversity and evolution of the transposable element repertoire in arthropods with particular reference to insects: 1 // BMC Evol. Biol. 2019. V. 19. № 1. P. 11. https://doi.org/10.1186/s12862-018-1324-9
- Jiang F., Yang M., Guo W. et al. Large-scale transcriptome analysis of retroelements in the migratory locust, Locusta migratoria // PLoS One. 2012. V. 7. № 7. https://doi.org/10.1371/journal.pone.0040532
- Gilbert C., Peccoud J., Cordaux R. Transposable elements and the evolution of insects // Annu. Rev. Entomol. 2021. V. 66. P. 355–372. https://doi.org/10.1146/annurev-ento-070720-074650
- Feschotte C. Transposable elements and the evolution of regulatory networks: 5 // Nat. Rev. Genet. 2008. V. 9. № 5. P. 397–405. https://doi.org/10.1038/nrg2337
- Bourque G., Burns K.H., Gehring M. et al. Ten things you should know about transposable elements // Genome Biology. 2018. V. 19. № 1. P. 199. https://doi.org/10.1186/s13059-018-1577-z
- Carareto C.M.A., Hernandez E.H., Vieira C. Genomic regions harboring insecticide resistance-associated Cyp genes are enriched by transposable element fragments carrying putative transcription factor binding sites in two sibling Drosophila species // Gene. 2014. V. 537. № 1. P. 93–99. https://doi.org/10.1016/j.gene.2013.11.080
- Wu C., Lu J. Diversification of transposable elements in Arthropods and its impact on genome evolution // Genes. 2019. V. 10. № 5. https://doi.org/10.3390/genes10050338
- Ellison C.E., Bachtrog D. Dosage compensation via transposable element mediated rewiring of a regulatory network // Science. 2013. V. 342. № 6160. P. 846–850. https://doi.org/10.1126/science.1239552
- Pardue M.L., Rashkova S., Casacuberta E. et al. Two retrotransposons maintain telomeres in Drosophila // Chromosome Res. 2005. V. 13. № 5. P. 443–453. https://doi.org/10.1007/s10577-005-0993-6
- Jangam D., Feschotte C., Betrán E. Transposable element domestication as an adaptation to evolutionary conflicts: 11 // Trends Genet. 2017. V. 33. № 11. P. 817–831. https://doi.org/10.1016/j.tig.2017.07.011
- Sieber K.R., Dorman T., Newell N., Yan H. (Epi)Genetic mechanisms underlying the evolutionary success of eusocial insects // Insects. 2021. V. 12. № 6. https://doi.org/10.3390/insects12060498
- Rubin B.E.R., Jones B.M., Hunt B.G., Kocher S.D. Rate variation in the evolution of non-coding DNA associated with social evolution in bees // Philosophical Transactions of the Royal Society. B. Biol. Sci. 2019. V. 374. № 1777. https://doi.org/10.1098/rstb.2018.0247
- Lebedev E., Smutin D., Timkin P. et al. The eusocial non-code: Unveiling the impact of noncoding RNAs on Hymenoptera eusocial evolution // Non-coding RNA Res. 2025. V. 11. P. 48–59. https://doi.org/10.1016/j.ncrna.2024.10.007
- Berger J., Legendre F., Zelosko K.M. et al. Eusocial transition in Blattodea: transposable elements and shifts of gene expression: 11 // Genes. 2022. V. 13. № 11. https://doi.org/10.3390/genes13111948
- Matsuura K., Mizumoto N., Kobayashi K. et al. A Genomic imprinting model of termite caste determination: Not genetic but epigenetic inheritance influences offspring caste fate // Am. Nat. 2018. V. 191. № 6. P. 677–690. https://doi.org/10.1086/697238
- Zhang H., Liu Q., Lu J. et al. Genomic and transcriptomic analyses of a social hemipteran provide new insights into insect sociality // Mol. Ecol. Resour. 2024. V. 24. № 8. https://doi.org/10.1111/1755-0998.14019
- Dayal S., Chaubey D., Joshi D.C. et al. Noncoding RNAs: Emerging regulators of behavioral complexity // Wiley Interdiscip. Rev. RNA. 2024. V. 15. № 3. https://doi.org/10.1002/wrna.1847
- Wojciechowski M., Lowe R., Maleszka J. et al. Phenotypically distinct female castes in honey bees are defined by alternative chromatin states during larval develop- ment // Genome Res. 2018. V. 28. № 10. P. 1532–1542. https://doi.org/10.1101/gr.236497.118
- Bray N.L., Pimentel H., Melsted P., Pachter L. Near-optimal probabilistic RNA-Seq quantification // Nat. Biotechnol. 2016. V. 34. P. 525–527. https://doi.org/10.1038/nbt.3519
- Love M.I., Huber W., Anders S. Moderated Estimation of frold change and dispersion for RNA-Seq data with DESeq2 // Genome Biol. 2014. V. 15. https://doi.org/10.1186/s13059-014-0550-8
- Zhang W., Wang L., Zhao Y. et al. Single-cell transcriptomic analysis of honeybee brains identifies vitellogenin as caste differentiation-related factor // Science. 2022. V. 25. № 7. https://doi.org/10.1016/j.isci.2022.104643
- Satija R., Farrell J.A., Gennert D. et al. Spatial reconstruction of single-cell gene expression data: 5 // Nat. Biotechnol. 2015. V. 33. № 5. P. 495–502. https://doi.org/10.1038/nbt.319
- Edwards T.N., Meinertzhagen I.A. The functional organisation of glia in the adult brain of Drosophila and other insects // Prog. Neurobiol. 2010. V. 90. № 4. P. 471–497. https://doi.org/10.1016/j.pneurobio.2010.01.001
- Allen A.M., Neville M.C., Birtles S. et al. A single-cell transcriptomic atlas of the adult Drosophila ventral nerve cord // Elife. 2020. V. 9. https://doi.org/10.7554/eLife.54074
- Davie K., Janssens J., Koldere D. et al. A single-cell transcriptome atlas of the aging Drosophila brain // Cell. 2018. V. 174. № 4. P. 982–998. https://doi.org/10.1016/j.cell.2018.05.057
- Robinow S., White K. Characterization and spatial distribution of the ELAV protein during Drosophila melanogaster development // J. Neurobiol. 1991. V. 22. № 5. P. 443–461. https://doi.org/10.1002/neu.480220503
- Galizia C.G., Menzel R. Odour perception in honeybees: Coding information in glomerular patterns // Curr. Opin. Neurobiol. 2000. V. 10. № 4. P. 504–510. https://doi.org/10.1016/s0959-4388(00)00109-4
- Groh C., Rössler W. Analysis of synaptic microcircuits in the mushroom bodies of the honeybee // Insects. 2020. V. 11. № 1. https://doi.org/10.3390/insects11010043
- Roat T.C., Landim C. da C. Mitosis and cell death in the optic lobes of workers, queens and drones of the honey bee (Apis mellifera) during metamorphosis // J. Biosci. 2010. V. 35. № 3. P. 415–425. https://doi.org/10.1007/s12038-010-0047-x
- Caron S., Abbott L.F. Neuroscience: Intelligence in the honeybee mushroom body // Curr. Biol. 2017. V. 27. № 6. P. R220–R223. https://doi.org/10.1016/j.cub.2017.02.011
- Suenami S., Oya S., Kohno H. Kenyon cell subtypes/populations in the honeybee mushroom bodies: Possible function based on their gene expression profiles, differentiation, possible evolution, and application of genome editing // Front. in Psychology. 2018. V. 9.
- Kaneko K., Suenami S., Kubo T. Gene expression profiles and neural activities of Kenyon cell subtypes in the honeybee brain: Identification of novel “middle-type” Kenyon cells // Zoological Lett. 2016. V. 2. P. 14. https://doi.org/10.1186/s40851-016-0051-6
- Eleftherianos I., Xu M., Yadi H. et al. Plasmatocyte-spreading peptide (PSP) plays a central role in insect cellular immune defenses against bacterial infection // J. Exp. Biol. 2009. V. 212. № Pt. 12. P. 1840–1848. https://doi.org/10.1242/jeb.026278
- Negri P., Maggi M., Ramirez L. et al. Cellular immunity in Apis mellifera: Studying hemocytes brings light about bees skills to confront threats: 3 // Apidologie. 2016. V. 47. № 3. P. 379–388. https://doi.org/10.1007/s13592-015-0418-2
- Chak S.T.C., Harris S.E., Hultgren K.M. et al. Eusociality in snapping shrimps is associated with larger genomes and an accumulation of transposable elements // Proc. Natl Acad. Sci. USA. 2021. V. 118. № 24. https://doi.org/ 10.1073/pnas.2025051118
- Lawson S.P., Legan A.W., Graham C., Abbot P. Comparative phenotyping across a social transition in aphids // Animal Behaviour. 2014. V. 96. P. 117–125. https://doi.org/10.1016/j.anbehav.2014.08.003
- Chapman T.W., Crespi B.J., Kranz B.D., Schwarz M.P. High relatedness and inbreeding at the origin of eusociality in gall-inducing thrips // Proc. Natl Acad. Sci. USA. 2000. V. 97. № 4. P. 1648–1650. https://doi.org/10.1073/pnas.020510097
- Biedermann P.H.W., Taborsky M. Larval helpers and age polyethism in ambrosia beetles // Proc. Natl Acad. Sci. USA. 2011. V. 108. № 41. P. 17064–17069. https://doi.org/10.1073/pnas.1107758108
- Oeyen J.P., Baa-Puyoulet P., Benoit J.B. Sawfly genomes reveal evolutionary acquisitions that fostered the mega-radiation of parasitoid and eusocial Hymenoptera // Genome Biol. and Evol. 2020. V. 12. № 7. P. 1099–1188. https://doi.org/10.1093/gbe/evaa106
- Torres V.O., Montagna T.S., Raizer J., Antonialli-Juni- or W.F. Division of labor in colonies of the eusocial wasp, Mischocyttarus consimilis // J. Insect Sci. 2012. V. 12. P. 21. https://doi.org/10.1673/031.012.2101
- Cardinal S., Danforth B.N. The antiquity and evolutionary history of social behavior in bees // PLoS One. 2011. V. 6. № 6. https://doi.org/10.1371/journal.pone.0021086
- Favreau E., Martínez-Ruiz C., Rodrigues Santiago L. et al. Genes and genomic processes underpinning the social lives of ants // Curr. Opin. Insect Sci. 2018. V. 25. P. 83–90. https://doi.org/10.1016/j.cois.2017.12.001
- Rees-Baylis E., Pen I., Kreider J.J. Maternal manipulation of offspring size can trigger the evolution of eusociality in promiscuous species // Proc. Natl Acad. Sci. USA. 2024. V. 121. № 33. https://doi.org/10.1073/pnas.2402179121
- Lagos-Oviedo J.J., Pen I., Kreider J.J. Coevolution of larval signalling and worker response can trigger developmental caste determination in social insects // Proc. Biol. Sci. 2024. V. 291. № 2027. https://doi.org/10.1098/rspb.2024.0538
- Ashrafi H., Hultgren K.M. Eusociality unveiled: Discovery and documentation of two new eusocial shrimp species (Caridea: Alpheidae) from the Western Indian Ocean // Arthropod Syst. & Phylogeny. 2023. V. 81. P. 1103–1120. https://doi.org/10.3897/asp.81.e111799
- Opachaloemphan C., Yan H., Leibholz A. et al. Recent advances in behavioral (epi)genetics in eusocial insects // Annu. Rev. Genet. 2018. V. 52. P. 489–510. https://doi.org/10.1146/annurev-genet-120116-024456
- Berger J., Legendre F., Zelosko K.M. et al. Eusocial transition in Blattodea: Transposable elements and shifts of gene expression // Genes (Basel). 2022. V. 13. № 11. https://doi.org/10.3390/genes13111948
- Korb J., Poulsen M., Hu H. et al. A genomic comparison of two termites with different social complexity // Front. Genet. 2015. V. 6. P. 9. https://doi.org/10.3389/fgene.2015.00009
- Kapheim K.M., Pan H., Li C. et al. Genomic signatures of evolutionary transitions from solitary to group living // Science. 2015. V. 348. № 6239. P. 1139–1143. https://doi.org/10.1126/science.aaa4788
- Fouks B., Brand P., Nguyen H.N. et al. The geno- mic basis of evolutionary differentiation among honey bees // Genome Res. 2021. V. 31. № 7. P. 1203–1215. https://doi.org/10.1101/gr.272310.12
- Schartl M., Kneitz S., Volkoff H. et al. The piranha genome provides molecular insight associated to its unique feeding behavior // Genome Biol. Evol. 2019. V. 11. № 8. P. 2099–2106. https://doi.org/10.1093/gbe/evz139
- Elsik C.G., Worley K.C., Bennett A.K. et al. Finding the missing honey bee genes: lessons learned from a genome upgrade // BMC Genomics. 2014. V. 15. P. 86. https://doi.org/10.1186/1471-2164-15-86
- Song J.L., Stoeckius M., Maaskola J. et al. Select microRNAs are essential for early development in the sea urchin // Dev. Biol. 2012. V. 362. № 1. P. 104–113. https://doi.org/10.1016/j.ydbio.2011.11.015
- Santos D., Feng M., Kolliopoulou A. et al. What are the functional roles of piwi proteins and piRNAs in insects? // Insects. 2023. V. 14. № 2. https://doi.org/10.3390/insects14020187
- Lukic S., Nicolas J.-C., Levine A.J. The diversity of zinc-finger genes on human chromosome 19 provides an evolutionary mechanism for defense against inherited endogenous retroviruses // Cell Death Differ. 2014. V. 21. № 3. P. 381–387. https://doi.org/10.1038/cdd.2013.150
- Baumgartner L., Handler D., Platzer S.W. et al. The Drosophila ZAD zinc finger protein Kipferl guides rhino to piRNA clusters // eLife. 2022. V. 11. https://doi.org/10.7554/eLife.80067
- Catlin N.S., Josephs E.B. The important contribution of transposable elements to phenotypic variation and evolution // Curr. Opin. Plant Biol. 2022. V. 65. https://doi.org/10.1016/j.pbi.2021.102140
- Wells J.N., Chang N.C., McCormick J. et al. Transposable elements drive the evolution of metazoan zinc finger genes // Genome Res. 2023. V. 33. № 8. P. 1325–1339. https://doi.org/10.1101/gr.277966.123
- Harrison M.C., Jongepier E., Robertson H.M. et al. Hemimetabolous genomes reveal molecular basis of termite eusociality: 3 // Nat. Ecol. Evol. 2018. V. 2. № 3. P. 557–566. https://doi.org/10.1038/s41559-017-0459-1
- Gebrie A. Transposable elements as essential elements in the control of gene expression // Mob. DNA. 2023. V. 14. № 1. P. 9. https://doi.org/10.1186/s13100-023-00297-3
- Sundaram V., Wysocka J. Transposable elements as a potent source of diverse cis-regulatory sequences in mammalian genomes // Philosophical Transactions of the Royal Society. B. Biol. Sci. 2020. V. 375. № 1795. https://doi.org/10.1098/rstb.2019.0347
- He J., Babarinde I.A., Sun L. et al. Identifying transposable element expression dynamics and heterogeneity during development at the single-cell level with a processing pipeline scTE: 1 // Nat. Commun. 2021. V. 12. № 1. P. 1456. https://doi.org/10.1038/s41467-021-21808-x
- Sekine K., Onoguchi M., Hamada M. Transposons contribute to the acquisition of cell type-specific cis-elements in the brain // Commun. Biol. 2023. V. 6. № 1. P. 631. https://doi.org/10.1038/s42003-023-04989-7
- Wang R., Zheng Y., Zhang Z. et al. MATES: A deep learning-based model for locus-specific quantification of transposable elements in single cell // Nat. Commun. 2024. V. 15. № 1. P. 8798. https://doi.org/10.1038/s41467-024-53114-7
- Rodríguez-Quiroz R., Valdebenito-Maturana B. Solo TE for improved analysis of transposable elements in single-cell RNA-Seq data using locus-specific expression // Commun. Biol. 2022. V. 5. № 1. P. 1063. https://doi.org/10.1038/s42003-022-04020-5
- He J., Babarinde I.A., Sun L. et al. Unveiling transposable element expression heterogeneity in cell fate regulation at the single-cell level // bioRxiv. 2020. P. 2020.07.23.218800.
- Treiber C.D., Waddell S. Transposon expression in the Drosophila brain is driven by neighboring genes and diversifies the neural transcriptome // Genome Res. 2020. V. 30. № 11. P. 1559–1569. https://doi.org/10.1101/gr.259200.119
Supplementary files
