Diversity and evolution of the repetitive element repertoire in two subspecies of honey bee Apis mellifera

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The present study attempts to determine the contribution of repetitive DNA sequences to the formation of social structures in Apis mellifera honeybees. Despite progress in understanding the molecular basis of caste formation, particularly related to the Notch signaling pathway, the identification of genome-specific cis-regulatory elements remains incomplete. The present work focuses on characterizing the landscape of repetitive elements in the genomes of two honeybee subspecies, A. m. mellifera and A. m. ligustica. The study revealed that the increased copy number of mobile genetic elements in A. m. ligustica is a significant difference between the two subspecies. Furthermore, differentially expressed repetitive elements with the potential for cis-regulatory functions were identified. Concurrently, the analysis of the transcriptome showed minimal differences in the expression of mobile elements during caste differentiation, a fundamental process in the eusocial organisation of bees. Furthermore, the analysis of transposon divergence between subspecies indicated consistent changes in their repeat status correlating with time of origin. Taken together, the findings indicate a potential role of repetitive elements in the acquisition of new regulatory functions, which opens new perspectives for understanding the molecular mechanisms of honey bee social behaviour.

About the authors

E. E. Lebedev

Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal medical and biological agency

Email: mainsalta@gmail.com
Moscow, 119121 Russia

N. V. Panyushev

Bioinformatics Institute

Email: mainsalta@gmail.com
Saint Petersburg, 197342 Russia

L. S. Adonin

Bonch-Bruevich St. Petersburg State University of Telecommunications

Author for correspondence.
Email: leo.adonin@gmail.com
Saint Petersburg, 193232 Russia

References

  1. Aizen M.A., Garibaldi L.A., Cunningham S.A., Klein A.M. How much does agriculture depend on pollinators? Lessons from long-term trends in crop production // Ann. Bot. 2009. V. 103. № 9. P. 1579–1588. https://doi.org/10.1093/aob/mcp076
  2. Christmann S. Do we realize the full impact of pollinator loss on other ecosystem services and the challenges for any restoration in terrestrial areas? // Restoration Ecology. 2019. V. 27. № 4. P. 720–725. https://doi.org/10.1111/rec.12950
  3. Patel V., Pauli N., Biggs E. et al. Why bees are critical for achieving sustainable development // Ambio. 2021. V. 50. № 1. P. 49–59. https://doi.org/10.1007/s13280-020-01333-9
  4. Dangles O., Casas J. Ecosystem services provided by insects for achieving sustainable development goals // Ecosystem Services. 2019. V. 35. P. 109–115. https://doi.org/10.1016/j.ecoser.2018.12.002
  5. Kohno H., Kubo T. Genetics in the honey bee: Achievements and prospects toward the functional analysis of molecular and neural mechanisms underlying social behaviors: 10 // Insects. 2019. V. 10. № 10. https://doi.org/10.3390/insects10100348
  6. Wilson E.O., Hölldobler B. Eusociality: Origin and consequences // Proc. Natl Acad. Sci. USA. 2005. V. 102. № 38. P. 13367–13371. https://doi.org/10.1073/pnas.0505858102
  7. Da Silva J. Life history and the transitions to eusociality in the hymenoptera // Front. Ecol. and Evol. 2021. V. 9.
  8. Ashby R., Forêt S., Searle I., Maleszka R. MicroRNAs in honey bee caste determination // Sci. Rep. 2016. V. 6. https://doi.org/10.1038/srep18794
  9. Alaux C., Sinha S., Hasadsri L. et al. Honey bee aggression supports a link between gene regulation and behavioral evolution // Proc. Natl Acad. Sci. USA. 2009. V. 106. № 36. P. 15400–15405. https://doi.org/10.1073/pnas.0907043106
  10. Greenberg J.K., Xia J., Zhou X. et al. Behavioral plasticity in honey bees is associated with differences in brain microRNA transcriptome: 6 // Genes Brain Behav. 2012. V. 11. № 6. P. 660–670. https://doi.org/10.1111/j.1601-183X.2012.00782.x
  11. Eyer M., Dainat B., Neumann P., Dietemann V. Social regulation of ageing by young workers in the honey bee, Apis mellifera // Exp. Gerontol. 2017. V. 87. Pt. A. P. 84–91. https://doi.org/10.1016/j.exger.2016.11.006
  12. De Paula Junior D.E., de Oliveira M.T., Brusca- din J.J. Caste-specific gene expression underlying the differential adult brain development in the honeybee Apis mellifera // Insect Mol. Biol. 2021. V. 30. № 1. P. 42–56. https://doi.org/10.1111/imb.12671
  13. Wang M., Xiao Y., Li Y., Wang X. RNA m6A Modification functions in larval development and caste differentiation in honeybee (Apis mellifera): 1 // Cell Rep. 2021. V. 34. № 1. https://doi.org/10.1016/j.celrep.2020.108580
  14. Yokoi K., Wakamiya T., Bono H. Meta-analysis of the public RNA-Seq data of the western honeybee Apis mellifera to construct reference transcriptome data // Insects. 2022. V. 13. № 10. https://doi.org/10.3390/insects13100931
  15. Brenman-Suttner D., Zayed A. An integrative genomic toolkit for studying the genetic, evolutionary, and molecular underpinnings of eusociality in insects // Curr. Opin. Insect Sci. 2024. V. 65. https://doi.org/10.1016/j.cois.2024.101231
  16. Smutin D., Taldaev A., Lebedev E., Adonin L. Shotgun metagenomics reveals minor micro“bee”omes diversity defining differences between larvae and pupae brood combs: 2 // Int. J. Mol. Sci. 2024. V. 25. № 2. https://doi.org/10.3390/ijms25020741
  17. Robinson S.D., Schendel V., Schroeder C.I. Intra-colony venom diversity contributes to maintaining eusociality in a cooperatively breeding ant // BMC Biol. 2023. V. 21. № 1. P. 5. https://doi.org/10.1186/s12915-022-01507-9
  18. Kreider J.J., Pen I. The evolution of eusociality: Kin selection theory, division of labour models, and evo-devo explanations // EcoEvoRxiv. 2022.
  19. Mikhailova A.A., Rinke S., Harrison M.C. Genomic signatures of eusocial evolution in insects // Curr. Opin. Insect Sci. 2024. V. 61. https://doi.org/10.1016/j.cois.2023.101136
  20. Gregory T.R., Nicol J.A., Tamm H. Eukaryotic genome size databases // Nucl. Acids Res. 2007. V. 35. P. D332–D338. https://doi.org/10.1093/nar/gkl828
  21. Petersen M., Armisen D., Gibbs R.A. Diversity and evolution of the transposable element repertoire in arthropods with particular reference to insects: 1 // BMC Evol. Biol. 2019. V. 19. № 1. P. 11. https://doi.org/10.1186/s12862-018-1324-9
  22. Jiang F., Yang M., Guo W. et al. Large-scale transcriptome analysis of retroelements in the migratory locust, Locusta migratoria // PLoS One. 2012. V. 7. № 7. https://doi.org/10.1371/journal.pone.0040532
  23. Gilbert C., Peccoud J., Cordaux R. Transposable elements and the evolution of insects // Annu. Rev. Entomol. 2021. V. 66. P. 355–372. https://doi.org/10.1146/annurev-ento-070720-074650
  24. Feschotte C. Transposable elements and the evolution of regulatory networks: 5 // Nat. Rev. Genet. 2008. V. 9. № 5. P. 397–405. https://doi.org/10.1038/nrg2337
  25. Bourque G., Burns K.H., Gehring M. et al. Ten things you should know about transposable elements // Genome Biology. 2018. V. 19. № 1. P. 199. https://doi.org/10.1186/s13059-018-1577-z
  26. Carareto C.M.A., Hernandez E.H., Vieira C. Genomic regions harboring insecticide resistance-associated Cyp genes are enriched by transposable element fragments carrying putative transcription factor binding sites in two sibling Drosophila species // Gene. 2014. V. 537. № 1. P. 93–99. https://doi.org/10.1016/j.gene.2013.11.080
  27. Wu C., Lu J. Diversification of transposable elements in Arthropods and its impact on genome evolution // Genes. 2019. V. 10. № 5. https://doi.org/10.3390/genes10050338
  28. Ellison C.E., Bachtrog D. Dosage compensation via transposable element mediated rewiring of a regulatory network // Science. 2013. V. 342. № 6160. P. 846–850. https://doi.org/10.1126/science.1239552
  29. Pardue M.L., Rashkova S., Casacuberta E. et al. Two retrotransposons maintain telomeres in Drosophila // Chromosome Res. 2005. V. 13. № 5. P. 443–453. https://doi.org/10.1007/s10577-005-0993-6
  30. Jangam D., Feschotte C., Betrán E. Transposable element domestication as an adaptation to evolutionary conflicts: 11 // Trends Genet. 2017. V. 33. № 11. P. 817–831. https://doi.org/10.1016/j.tig.2017.07.011
  31. Sieber K.R., Dorman T., Newell N., Yan H. (Epi)Genetic mechanisms underlying the evolutionary success of eusocial insects // Insects. 2021. V. 12. № 6. https://doi.org/10.3390/insects12060498
  32. Rubin B.E.R., Jones B.M., Hunt B.G., Kocher S.D. Rate variation in the evolution of non-coding DNA associated with social evolution in bees // Philosophical Transactions of the Royal Society. B. Biol. Sci. 2019. V. 374. № 1777. https://doi.org/10.1098/rstb.2018.0247
  33. Lebedev E., Smutin D., Timkin P. et al. The eusocial non-code: Unveiling the impact of noncoding RNAs on Hymenoptera eusocial evolution // Non-coding RNA Res. 2025. V. 11. P. 48–59. https://doi.org/10.1016/j.ncrna.2024.10.007
  34. Berger J., Legendre F., Zelosko K.M. et al. Eusocial transition in Blattodea: transposable elements and shifts of gene expression: 11 // Genes. 2022. V. 13. № 11. https://doi.org/10.3390/genes13111948
  35. Matsuura K., Mizumoto N., Kobayashi K. et al. A Genomic imprinting model of termite caste determination: Not genetic but epigenetic inheritance influences offspring caste fate // Am. Nat. 2018. V. 191. № 6. P. 677–690. https://doi.org/10.1086/697238
  36. Zhang H., Liu Q., Lu J. et al. Genomic and transcriptomic analyses of a social hemipteran provide new insights into insect sociality // Mol. Ecol. Resour. 2024. V. 24. № 8. https://doi.org/10.1111/1755-0998.14019
  37. Dayal S., Chaubey D., Joshi D.C. et al. Noncoding RNAs: Emerging regulators of behavioral complexity // Wiley Interdiscip. Rev. RNA. 2024. V. 15. № 3. https://doi.org/10.1002/wrna.1847
  38. Wojciechowski M., Lowe R., Maleszka J. et al. Phenotypically distinct female castes in honey bees are defined by alternative chromatin states during larval develop- ment // Genome Res. 2018. V. 28. № 10. P. 1532–1542. https://doi.org/10.1101/gr.236497.118
  39. Bray N.L., Pimentel H., Melsted P., Pachter L. Near-optimal probabilistic RNA-Seq quantification // Nat. Biotechnol. 2016. V. 34. P. 525–527. https://doi.org/10.1038/nbt.3519
  40. Love M.I., Huber W., Anders S. Moderated Estimation of frold change and dispersion for RNA-Seq data with DESeq2 // Genome Biol. 2014. V. 15. https://doi.org/10.1186/s13059-014-0550-8
  41. Zhang W., Wang L., Zhao Y. et al. Single-cell transcriptomic analysis of honeybee brains identifies vitellogenin as caste differentiation-related factor // Science. 2022. V. 25. № 7. https://doi.org/10.1016/j.isci.2022.104643
  42. Satija R., Farrell J.A., Gennert D. et al. Spatial reconstruction of single-cell gene expression data: 5 // Nat. Biotechnol. 2015. V. 33. № 5. P. 495–502. https://doi.org/10.1038/nbt.319
  43. Edwards T.N., Meinertzhagen I.A. The functional organisation of glia in the adult brain of Drosophila and other insects // Prog. Neurobiol. 2010. V. 90. № 4. P. 471–497. https://doi.org/10.1016/j.pneurobio.2010.01.001
  44. Allen A.M., Neville M.C., Birtles S. et al. A single-cell transcriptomic atlas of the adult Drosophila ventral nerve cord // Elife. 2020. V. 9. https://doi.org/10.7554/eLife.54074
  45. Davie K., Janssens J., Koldere D. et al. A single-cell transcriptome atlas of the aging Drosophila brain // Cell. 2018. V. 174. № 4. P. 982–998. https://doi.org/10.1016/j.cell.2018.05.057
  46. Robinow S., White K. Characterization and spatial distribution of the ELAV protein during Drosophila melanogaster development // J. Neurobiol. 1991. V. 22. № 5. P. 443–461. https://doi.org/10.1002/neu.480220503
  47. Galizia C.G., Menzel R. Odour perception in honeybees: Coding information in glomerular patterns // Curr. Opin. Neurobiol. 2000. V. 10. № 4. P. 504–510. https://doi.org/10.1016/s0959-4388(00)00109-4
  48. Groh C., Rössler W. Analysis of synaptic microcircuits in the mushroom bodies of the honeybee // Insects. 2020. V. 11. № 1. https://doi.org/10.3390/insects11010043
  49. Roat T.C., Landim C. da C. Mitosis and cell death in the optic lobes of workers, queens and drones of the honey bee (Apis mellifera) during metamorphosis // J. Biosci. 2010. V. 35. № 3. P. 415–425. https://doi.org/10.1007/s12038-010-0047-x
  50. Caron S., Abbott L.F. Neuroscience: Intelligence in the honeybee mushroom body // Curr. Biol. 2017. V. 27. № 6. P. R220–R223. https://doi.org/10.1016/j.cub.2017.02.011
  51. Suenami S., Oya S., Kohno H. Kenyon cell subtypes/populations in the honeybee mushroom bodies: Possible function based on their gene expression profiles, differentiation, possible evolution, and application of genome editing // Front. in Psychology. 2018. V. 9.
  52. Kaneko K., Suenami S., Kubo T. Gene expression profiles and neural activities of Kenyon cell subtypes in the honeybee brain: Identification of novel “middle-type” Kenyon cells // Zoological Lett. 2016. V. 2. P. 14. https://doi.org/10.1186/s40851-016-0051-6
  53. Eleftherianos I., Xu M., Yadi H. et al. Plasmatocyte-spreading peptide (PSP) plays a central role in insect cellular immune defenses against bacterial infection // J. Exp. Biol. 2009. V. 212. № Pt. 12. P. 1840–1848. https://doi.org/10.1242/jeb.026278
  54. Negri P., Maggi M., Ramirez L. et al. Cellular immunity in Apis mellifera: Studying hemocytes brings light about bees skills to confront threats: 3 // Apidologie. 2016. V. 47. № 3. P. 379–388. https://doi.org/10.1007/s13592-015-0418-2
  55. Chak S.T.C., Harris S.E., Hultgren K.M. et al. Eusociality in snapping shrimps is associated with larger genomes and an accumulation of transposable elements // Proc. Natl Acad. Sci. USA. 2021. V. 118. № 24. https://doi.org/ 10.1073/pnas.2025051118
  56. Lawson S.P., Legan A.W., Graham C., Abbot P. Comparative phenotyping across a social transition in aphids // Animal Behaviour. 2014. V. 96. P. 117–125. https://doi.org/10.1016/j.anbehav.2014.08.003
  57. Chapman T.W., Crespi B.J., Kranz B.D., Schwarz M.P. High relatedness and inbreeding at the origin of eusociality in gall-inducing thrips // Proc. Natl Acad. Sci. USA. 2000. V. 97. № 4. P. 1648–1650. https://doi.org/10.1073/pnas.020510097
  58. Biedermann P.H.W., Taborsky M. Larval helpers and age polyethism in ambrosia beetles // Proc. Natl Acad. Sci. USA. 2011. V. 108. № 41. P. 17064–17069. https://doi.org/10.1073/pnas.1107758108
  59. Oeyen J.P., Baa-Puyoulet P., Benoit J.B. Sawfly genomes reveal evolutionary acquisitions that fostered the mega-radiation of parasitoid and eusocial Hymenoptera // Genome Biol. and Evol. 2020. V. 12. № 7. P. 1099–1188. https://doi.org/10.1093/gbe/evaa106
  60. Torres V.O., Montagna T.S., Raizer J., Antonialli-Juni- or W.F. Division of labor in colonies of the eusocial wasp, Mischocyttarus consimilis // J. Insect Sci. 2012. V. 12. P. 21. https://doi.org/10.1673/031.012.2101
  61. Cardinal S., Danforth B.N. The antiquity and evolutionary history of social behavior in bees // PLoS One. 2011. V. 6. № 6. https://doi.org/10.1371/journal.pone.0021086
  62. Favreau E., Martínez-Ruiz C., Rodrigues Santiago L. et al. Genes and genomic processes underpinning the social lives of ants // Curr. Opin. Insect Sci. 2018. V. 25. P. 83–90. https://doi.org/10.1016/j.cois.2017.12.001
  63. Rees-Baylis E., Pen I., Kreider J.J. Maternal manipulation of offspring size can trigger the evolution of eusociality in promiscuous species // Proc. Natl Acad. Sci. USA. 2024. V. 121. № 33. https://doi.org/10.1073/pnas.2402179121
  64. Lagos-Oviedo J.J., Pen I., Kreider J.J. Coevolution of larval signalling and worker response can trigger developmental caste determination in social insects // Proc. Biol. Sci. 2024. V. 291. № 2027. https://doi.org/10.1098/rspb.2024.0538
  65. Ashrafi H., Hultgren K.M. Eusociality unveiled: Discovery and documentation of two new eusocial shrimp species (Caridea: Alpheidae) from the Western Indian Ocean // Arthropod Syst. & Phylogeny. 2023. V. 81. P. 1103–1120. https://doi.org/10.3897/asp.81.e111799
  66. Opachaloemphan C., Yan H., Leibholz A. et al. Recent advances in behavioral (epi)genetics in eusocial insects // Annu. Rev. Genet. 2018. V. 52. P. 489–510. https://doi.org/10.1146/annurev-genet-120116-024456
  67. Berger J., Legendre F., Zelosko K.M. et al. Eusocial transition in Blattodea: Transposable elements and shifts of gene expression // Genes (Basel). 2022. V. 13. № 11. https://doi.org/10.3390/genes13111948
  68. Korb J., Poulsen M., Hu H. et al. A genomic comparison of two termites with different social complexity // Front. Genet. 2015. V. 6. P. 9. https://doi.org/10.3389/fgene.2015.00009
  69. Kapheim K.M., Pan H., Li C. et al. Genomic signatures of evolutionary transitions from solitary to group living // Science. 2015. V. 348. № 6239. P. 1139–1143. https://doi.org/10.1126/science.aaa4788
  70. Fouks B., Brand P., Nguyen H.N. et al. The geno- mic basis of evolutionary differentiation among honey bees // Genome Res. 2021. V. 31. № 7. P. 1203–1215. https://doi.org/10.1101/gr.272310.12
  71. Schartl M., Kneitz S., Volkoff H. et al. The piranha genome provides molecular insight associated to its unique feeding behavior // Genome Biol. Evol. 2019. V. 11. № 8. P. 2099–2106. https://doi.org/10.1093/gbe/evz139
  72. Elsik C.G., Worley K.C., Bennett A.K. et al. Finding the missing honey bee genes: lessons learned from a genome upgrade // BMC Genomics. 2014. V. 15. P. 86. https://doi.org/10.1186/1471-2164-15-86
  73. Song J.L., Stoeckius M., Maaskola J. et al. Select microRNAs are essential for early development in the sea urchin // Dev. Biol. 2012. V. 362. № 1. P. 104–113. https://doi.org/10.1016/j.ydbio.2011.11.015
  74. Santos D., Feng M., Kolliopoulou A. et al. What are the functional roles of piwi proteins and piRNAs in insects? // Insects. 2023. V. 14. № 2. https://doi.org/10.3390/insects14020187
  75. Lukic S., Nicolas J.-C., Levine A.J. The diversity of zinc-finger genes on human chromosome 19 provides an evolutionary mechanism for defense against inherited endogenous retroviruses // Cell Death Differ. 2014. V. 21. № 3. P. 381–387. https://doi.org/10.1038/cdd.2013.150
  76. Baumgartner L., Handler D., Platzer S.W. et al. The Drosophila ZAD zinc finger protein Kipferl guides rhino to piRNA clusters // eLife. 2022. V. 11. https://doi.org/10.7554/eLife.80067
  77. Catlin N.S., Josephs E.B. The important contribution of transposable elements to phenotypic variation and evolution // Curr. Opin. Plant Biol. 2022. V. 65. https://doi.org/10.1016/j.pbi.2021.102140
  78. Wells J.N., Chang N.C., McCormick J. et al. Transposable elements drive the evolution of metazoan zinc finger genes // Genome Res. 2023. V. 33. № 8. P. 1325–1339. https://doi.org/10.1101/gr.277966.123
  79. Harrison M.C., Jongepier E., Robertson H.M. et al. Hemimetabolous genomes reveal molecular basis of termite eusociality: 3 // Nat. Ecol. Evol. 2018. V. 2. № 3. P. 557–566. https://doi.org/10.1038/s41559-017-0459-1
  80. Gebrie A. Transposable elements as essential elements in the control of gene expression // Mob. DNA. 2023. V. 14. № 1. P. 9. https://doi.org/10.1186/s13100-023-00297-3
  81. Sundaram V., Wysocka J. Transposable elements as a potent source of diverse cis-regulatory sequences in mammalian genomes // Philosophical Transactions of the Royal Society. B. Biol. Sci. 2020. V. 375. № 1795. https://doi.org/10.1098/rstb.2019.0347
  82. He J., Babarinde I.A., Sun L. et al. Identifying transposable element expression dynamics and heterogeneity during development at the single-cell level with a processing pipeline scTE: 1 // Nat. Commun. 2021. V. 12. № 1. P. 1456. https://doi.org/10.1038/s41467-021-21808-x
  83. Sekine K., Onoguchi M., Hamada M. Transposons contribute to the acquisition of cell type-specific cis-elements in the brain // Commun. Biol. 2023. V. 6. № 1. P. 631. https://doi.org/10.1038/s42003-023-04989-7
  84. Wang R., Zheng Y., Zhang Z. et al. MATES: A deep learning-based model for locus-specific quantification of transposable elements in single cell // Nat. Commun. 2024. V. 15. № 1. P. 8798. https://doi.org/10.1038/s41467-024-53114-7
  85. Rodríguez-Quiroz R., Valdebenito-Maturana B. Solo TE for improved analysis of transposable elements in single-cell RNA-Seq data using locus-specific expression // Commun. Biol. 2022. V. 5. № 1. P. 1063. https://doi.org/10.1038/s42003-022-04020-5
  86. He J., Babarinde I.A., Sun L. et al. Unveiling transposable element expression heterogeneity in cell fate regulation at the single-cell level // bioRxiv. 2020. P. 2020.07.23.218800.
  87. Treiber C.D., Waddell S. Transposon expression in the Drosophila brain is driven by neighboring genes and diversifies the neural transcriptome // Genome Res. 2020. V. 30. № 11. P. 1559–1569. https://doi.org/10.1101/gr.259200.119

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences