Hygienic problems of interaction of artificial lighting and intercellular water (literature review)

Cover Page

Cite item

Full Text

Abstract

The role of water and aquaporin system in artificial lighting conditions and their importance for vision and the human body as a whole is considered.

The review used the databases Scopus, Web of Science, MedLine, The Cochrane Library, EMBASE, Global Health, CyberLeninka, and RSCI. 

The functionally necessary level of water exchange in the human eye was shown to largely depend on the efficiency of aquaporins exposed to aggressive environment.  Such effects include an excessive dose of blue light, electromagnetic radiation, and excessive concentration of mercury, copper ions, and zinc ions in the human body. In the conditions of chemical pollution, excessive blue light, the violated efficiency of aquaporins leads to swelling in the functional structures of the eye, changes in their optical characteristics. So far the conditions for the development of diseases of the visual analyzer are created. The optical system of the eye is very sensitive to the geometric dimensions of the cornea, iris, lens and Muller cells. Edema of these cells is the primary causes of optical distortions of images on the retina. 

The positive effect of humoral regulators of aquaporin activity (vasopressin, estrogens, component of the renin-angiotensin system) on the lens transparency was shown. Aquaporin-0 plays a key role in the development of the refractive index gradient in the mammalian eye lens to prevent spherical aberration.

Aquaporin system permeates all cells of the functional structures of the body. A number of researchers suggest structural disorders of water dynamics between and within cells to be the basis of many diseases. More recent data have shown that aquaporin may also be associated with tumor, proliferation and migration of tumor cells, as well as angiogenesis in solid and hematological tumors. 

The discovery of aquaporins, which provide rapid transport of water through the biological membranes of all living organisms (animals, plants and microorganisms) has disproved the traditional concept and was an outstanding achievement of General biology, botany, physiology, medicine and ophthalmology. 

Changing the properties of intercellular water in artificial lighting (and other negative factors) is a new physiological and hygienic problem.

Contributions:

Kaptsov V.A. — the concept and design of the study, writing the text, design and editing of the article, responsibility for the integrity of all parts of the article.

Deynego V.N. — material collection, data processing, text writing.

Shipilov I.V. — material collection and data processing. All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.

Conflict of interest. The authors declare no conflict of interest.

Acknowledgement. The study had no sponsorship.

Received: November 12, 2021 / Accepted: November 25, 2021 / Published: April 08, 2022

About the authors

Valery A. Kaptsov

All-Russian Research Institute of Transport Hygiene of the Federal Service for Supervision in Protection of the Rights of Consumer and Man Wellbeing

Author for correspondence.
Email: kapcovva39@mail.ru
ORCID iD: 0000-0002-3130-2592

MD, PhD, DSci., Professor, Corresponding Member of the Russian Academy of Sciences, Head of the Department of Occupational Hygiene of the All-Russian Research Institute of Transport Hygiene of Federal Service for Supervision in Protection of the Rights of Consumer and Man Wellbeing, Moscow, 125438, Russian Federation.

e-mail: kapcovva39@mail.ru

Russian Federation

Vitaly N. Deynego

All-Russian Research Institute of Transport Hygiene of the Federal Service for Supervision in Protection of the Rights of Consumer and Man Wellbeing

Email: noemail@neicon.ru
Russian Federation

Igor V. Shipilov

Joint stock company “Siberian Coal Energy Company” (АО «СУЭК»)

Email: noemail@neicon.ru
Russian Federation

References

  1. Nedachin A.E., Artemova T.Z., Dmitrieva R.A., Doskina T.V., Talaeva Yu.G., Ivanova L.V., et al. Problems of epidemic safety of drinking water use by the population of Russia. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2005; 84(6): 14–8. (in Russian)
  2. Rakhmanin Yu.A., Mikhaylova R.I. Food risks analysis and water safety. Analiz riska zdorov’yu. 2018; (4): 31–42. https://doi.org/10.21668/health.risk/2018.4.04 (in Russian)
  3. Day R.E., Kitchen P., Owen D.S., Bland C., Marshall L., Conner A.C., et al. Human aquaporins: regulators of transcellular water flow. Biochim. Biophys. Acta. 2014; 1840(5): 1492–506. https://doi.org/10.1016/j.bbagen.2013.09.033
  4. Schey K.L., Wang Z., Wenke L.J., Qi Y. Aquaporins in the eye: expression, function, and roles in ocular disease. Biochim. Biophys. Acta. 2014; 1840(5): 1513–23. https://doi.org/10.1016/j.bbagen.2013.10.037
  5. Sukmans’kiy O.І. Violation of water-mineral metabolism. In: Zayko N.N., Byts’ Yu.V., eds. Pathophysiology: Textbook. Kiev: Meditsina; 2010: 373–87.
  6. Rakhmanin Yu.A., Stekhin A.A., Yakovleva G.V. Biophysics of Water: Quantum Nonlocality in Water Treatment Technologies; Associated Regulatory Role of Water in Cellular Metabolism; Regulation of Bioenergetic Activity of Drinking Water [Biofizika vody: Kvantovaya nelokal’nost’ v tekhnologiyakh vodopodgotovki; regulyatornaya rol’ assotsiirovannoy vody v kletochnom metabolizme; normirovanie bioenergeticheskoy aktivnosti pit’evoy vody]. Moscow: LENAND; 2016. (in Russian)
  7. Beitz E. Preface: aquaporins. Handb. Exp. Pharmacol. 2009; (190): 5–6.
  8. Krysova A.V., Tsirkin V.I., Kunshin A.A. The role of aquaporins in water transport through biological membranes. Vyatskiy meditsinskiy vestnik. 2012; (2): 50–8. (in Russian)
  9. Sukmanskiy O.I., Pasechnikova N.V., Vit V.V., Naumenko V.A., Sukmanskiy I.O. Aquaporins (water channels): ophthalmological aspects. Oftal’mologicheskiy zhurnal. 2013; (1): 66–73. (in Russian)
  10. Verkman A.S. Aquaporins at a glance. J. Cell. Sci. 2011; 124(Pt. 13): 2107–12. https://doi.org/10.1242/jcs.079467
  11. Aquaporins are natural moisture conductors and skin protectors. Available at: http://cosmetic.ua/akvaporini_estestvennie_provodniki_vlagi_i_zaschitniki_kozhi (in Russian)
  12. Hamann S., Zeuthen T., La Cour M., Nagelhus E.A., Ottersen O.P., Agre P., et al. Aquaporins in complex tissues: distribution of aquaporins 1–5 in human and rat eye. Am. J. Physiol. 1998; 274(5): C1332–45. https://doi.org/10.1152/ajpcell.1998.274.5.c1332
  13. Verkman A.S., Ruiz-Ederra J., Levin M.H. Functions of aquaporins in the eye. Prog. Retin. Eye Res. 2008; 27(4): 420–33. https://doi.org/10.1016/j.preteyeres.2008.04.001
  14. Muranov K.O., Ostrovskiy M.A. Molecular Physiology and Pathology of the Lens of the Eye [Molekulyarnaya fiziologiya i patologiya khrustalika glaza]. Moscow: TORUS PRESS; 2013. (in Russian)
  15. Bragin E.V. Risk factors which cause senile cataract evolvement: outline. Analiz riska zdorov’yu. 2018; (1): 113–25. (in Russian)
  16. Coca-Prados M., Escribano J. New perspectives in aqueous humor secretion and in glaucoma: the ciliary body as a multifunctional neuroendocrine gland. Prog. Retin. Eye Res. 2007; 26(3): 239–62. https://doi.org/10.1016/j.preteyeres.2007.01.002
  17. Sumerkina V.A. The role of aquaporins in maintaining the transparency of the lens (experimental study): Diss. Chelyabinsk; 2010. (in Russian)
  18. Chepelinsky A.B. Structural function of MIP/aquaporin 0 in the eye lens; genetic defects lead to congenital inherited cataracts. Handb. Exp. Pharmacol. 2009; (190): 265–97. https://doi.org/10.1007/978-3-540-79885-9_14
  19. Kumari S.S., Varadaraj K. Aquaporin 0 plays a pivotal role in refractive index gradient development in mammalian eye lens to prevent spherical aberration. Biochem. Biophys. Res. Commun. 2014; 452(4): 986–91. https://doi.org/10.1016/j.bbrc.2014.09.032
  20. Gonen T., Sliz P., Kistler J., Cheng Y., Walz T. Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature. 2004; 429(6988): 193–7. https://doi.org/10.1038/nature02503
  21. Shkol’nik-Yarros E.G., Kalinina A.V. Retinal Neurons [Neyrony setchatki]. Moscow: Nauka; 1986. (in Russian)
  22. Kaptsov V.A., Deynego V.N. Perception of color in LED lighting – health risks. Analiz riska zdorov’yu. 2017; (2): 16–25. https://doi.org/10.21668/health.risk/2017.2.02 (in Russian)
  23. Iandiev I., Wurm A., Hollborn M., Wiedemann P., Grimm C., Remé C.E., et al. Müller cell response to blue light injury of the rat retina. Invest. Ophthalmol. Vis. Sci. 2008; 49(8): 3559–67. https://doi.org/10.1167/iovs.08-1723
  24. Wang Y. Aquaporin 4 and kir4.1 distribution in retinal glial cells of normal macaque eyes and eyes with experimental glaucoma 2015-12. Available at: https://uh-ir.tdl.org/handle/10657/2177
  25. Avola R., Graziano A.C.E., Pannuzzo G., Cardile V. blue light induces down-regulation of Aquaporin 1, 3, and 9 in human keratinocytes. Cells. 2018; 7(11): 197. https://doi.org/10.3390/cells7110197
  26. King L.S., Yasui M., Agre P. Aquaporins in health and disease. Int. J. Mol. Sci. 2016; 17(8): 1213.
  27. Davidson R.M., Lauritzen A., Seneff S. Biological water dynamics and entropy: A biophysical origin of cancer and other diseases entropy. 2013; 15(9): 3822–76.
  28. Wang J., Feng L., Zhu Z., Zheng M., Wang D., Chen Z., et al. Aquaporin as diagnostic and therapeutic targets in cancer: How far we are? J. Transl. Med. 2015; 13: 96. https://doi.org/10.1186/s12967-015-0439-7

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Kaptsov V.A., Deynego V.N., Shipilov I.V.



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.