Comparative analysis of the contribution of short-lived radioiodines to the thyroid radiation dose for the population after the Chernobyl and Fukushima accidents

封面

如何引用文章

全文:

详细

Purpose. To present results of the comparative analysis of the contribution of short-lived radioiodines to the thyroid radiation dose (TRD) in the population after two severe radiation accidents at nuclear reactors: the Chernobyl accident (1986) and the Fukushima accident (2011).

Material and methods. The contribution of short-lived radioiodines to the TRD is expressed in fractions of the TRD from 131I (the main dose forming radionuclide). This contribution takes into account the ratio between doses from inhalation and ingestion intake of 131I, the ratios between dose factors of the expected dose to the thyroid gland in the case of inhalation and ingestion intake of iodine and tellurium isotopes, the ratios between time-integrated concentration of iodine and tellurium isotopes at the ground-level air and in foodstuffs (milk).

Results. The typical contribution of short-lived radioiodines to TRD for the population accounts of few percent of dose to the thyroid gland from 131I following the Chernobyl accident as on March 15, 2011, the day of the main fallout after  the Fukushima accident — within 15%. For both accidents the leading role among the short-lived radioiodines in terms of dose to the thyroid for the public belongs to 133I and 132I (due to the intake of 132Te and its radioactive decay to 132I in the body).

Conclusion. Significant differences in estimates of the typical contribution of short-lived radioiodines to TRD for the population after two considered accidents can be explained by differences in the dominant pathways of the intake of radioiodine by population. The dominant pathway for the vast majority of the population in the contaminated areas following the Chernobyl accident was ingestion intake with locally produced cow’s milk. Following the Fukushima accident the dominant pathway was inhalation intake, because the Japanese authorities were able to quickly prevent the intake of radioiodine with foodstuffs.

作者简介

Sergey Shinkarev

A.I. Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

编辑信件的主要联系方式.
Email: sshinkarev@mail.ru
ORCID iD: 0000-0003-0844-4733

MD, PhD, DSci., Head of the Department of Industrial Radiation Hygiene of the A.I. Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, 123182, Russian Federation.

e-mail: sshinkarev@mail.ru

俄罗斯联邦

A. Samoylov

A.I. Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

Email: noemail@neicon.ru
俄罗斯联邦

E. Granovskaya

A.I. Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

Email: noemail@neicon.ru
ORCID iD: 0000-0002-6353-0469
俄罗斯联邦

E. Korneva

A.I. Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

Email: noemail@neicon.ru
ORCID iD: 0000-0001-8338-1192
俄罗斯联邦

B. Kukhta

A.I. Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

Email: noemail@neicon.ru
ORCID iD: 0000-0002-2315-7049
俄罗斯联邦

A. Androsova

A.I. Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

Email: noemail@neicon.ru
ORCID iD: 0000-0002-1071-5793
俄罗斯联邦

V. Iatsenko

A.I. Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency

Email: noemail@neicon.ru
ORCID iD: 0000-0002-4344-5654
俄罗斯联邦

参考

  1. Moskalev Yu.I. Actual problems of radiobiology of incorporated iodine isotopes. In: Moskalev Yu.I., Kalistratova V.S., eds. The Kinetics of Metabolism, the Biological Effect of Radioactive Isotopes of Iodine [Kinetika obmena, biologicheskoe deystvie radioaktivnykh izotopov yoda]. Moscow; 1989: 7–28. (in Russian)
  2. Vasilenko I.Ya. Toxicological characteristics of radioactive isotopes of iodine. In: Moskalev Yu.I., Kalistratova V.S., eds. The Kinetics of Metabolism, the Biological Effect of Radioactive Isotopes of Iodine [Kinetika obmena, biologicheskoe deystvie radioaktivnykh izotopov yoda]. Moscow; 1989: 29–40. (in Russian)
  3. NCRP. Comparative Carcinogenicity of Ionizing Radiation and Chemicals Purchase. NCRP Report No. 96; 1989. (in Russian)
  4. United Nations. Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation, 2000 Report to the General Assembly. Annex J. Exposures and effects from the Chernobyl accident. New York, 2000.
  5. United Nations. Sources, effects and risks of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation, 1988 Report to the General Assembly. New York; 1988.
  6. United Nations. Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation, 2008 Report to the General Assembly. Annex. Health effects due to radiation from the Chernobyl accident. New York; 2008.
  7. Gavrilin Yu., Khrouch V., Shinkarev S., Drozdovitch V., Minenko V., Shemiakina E., et al. Individual thyroid dose estimation for a case-control study of Chernobyl-related thyroid cancer among children of Belarus – Part I: 131I, short-lived radioiodines (132I, 133I, 135I), and short-lived radiotelluriums (131mTe and 132Te). Health Phys. 2004; 86(6): 565–85.
  8. Balonov M., Kaidanovsky G., Zvonova I., Kovtun A., Bouville A., Luckyanov N., et al. Contributions of short-lived radioiodines to thyroid doses received by evacuees from the Chernobyl area estimated using early in vivo activity measurements. Radiat. Prot. Dosimetry. 2003; 105(1-4): 593–9.
  9. United Nations. Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation, Volume 1: 2013 Report to the General Assembly. Annex A: Levels and effects of radiation exposure due to the nuclear accident after the 2011 great east-Japan earthquake and tsunami. New York; 2014.
  10. IAEA. The Fukushima Daiichi Accident. International Atomic Energy Agency. Vienna; 2015.
  11. Shinkarev S.M., Kotenko K.V., Granovskaya E.O., Yatsenko V.N., Imanaka T., Hoshi M. Estimation of the contribution of short-lived radioiodines to the thyroid dose for the public in case of inhalation intake following the Fukushima accident. Radiat. Prot. Dosimetry. 2015; 164(1-2): 51–6.
  12. Shinkarev S.М. Method of identification of the main pathways of 131I intake to the population because of a radiometric survey of the thyroid gland after the accident. ANRI. 2008; (4): 39–51. (in Russian)
  13. Kim E., Kurihara O., Kunishima N., Nakano T., Tani K., Hachiya M., et al. Early Intake of Radiocesium by Residents Living Near the TEPCO Fukushima Dai-Ichi Nuclear Power Plant after the Accident. Part 1: Internal Doses Based on Whole-body Measurements by NIRS. Health Phys. 2016; 111(5): 451–64.
  14. Kim E., Kurihara O., Kunishima N., Momose T., Ishikawa T., Akashi M. Internal thyroid doses to Fukushima residents – estimation and issues remaining. J. Radiat. Res. 2016; 57(Suppl. 1): i118–i126.
  15. ICRP – International Commission on Radiological Protection. Age-dependent doses to members of the public from intake of radionuclides: Part 1. Ingestion dose coefficients. ICRP Publication 56. Ann. ICRP. 1990; 20(2).
  16. ICRP – International Commission on Radiological Protection. Age-dependent doses to members of the public from intake of radionuclides: Part 2. Ingestion dose coefficients. ICRP Publication 67. Ann. ICRP. 1993; 23(3/4).
  17. ICRP – International Commission on Radiological Protection. Age-dependent doses to members of the public from intake of radionuclides: Part 5. Compilation of ingestion and inhalation dose coefficients. ICRP Publication 72. Ann. ICRP. 1996; 26(1).
  18. ICRP – International Commission on Radiological Protection. Age-dependent doses to members of the public from intake of radionuclides: Part 4. Inhalation dose coefficients. ICRP Publication 71. Ann. ICRP. 1995; 25(3-4).
  19. Izrael' Yu.A., Vakulovskiy S.M., Vetrov V.A., Petrov V.N., Rovinskiy F.Ya., Stukin E.D. Chernobyl: Radioactive Contamination of Natural Environments [Chernobyl': radioaktivnoe zagryaznenie prirodnykh sred]. Leningrad: Gidrometeoizdat; 1990. (in Russian)
  20. Makhon'ko K.P., Kozlova E.G., Volokitin A.A. Dynamics of accumulation of radioiodine on soil and reconstruction of doses from its radiation in the territory contaminated after the Chernobyl accident. Radiatsiya i risk. 1996; (7): 140–91. (in Russian)
  21. Dubina Yu.V., Shchekin Yu.K., Guskina L.N. Systematization and Verification of Spectrometric Analysis of Soil, Grass, Milk and Dairy Products Samples with a Measured Iodine-131 Content. Report on SRW. IAE AN BSSR [Sistematizatsiya i verifikatsiya dannykh spektrometricheskogo analiza prob pochvy, travy, moloka i molochnykh produktov s izmerennym urovnem soderzhaniya yoda-131. Otchet o NIR. IAE AN BSSR]. Minsk; 1990. (in Russian)
  22. Tazoe H., Hosoda M., Sorimachi A., Nakata A., Yoshida M.A., Tokonami S., et al. Radioactive pollution from Fukushima Daiichi nuclear power plant in the terrestrial environment. Radiat. Prot. Dosimetry. 2012; 152(1-3): 198–203.
  23. Imanaka T., Endo S., Sugai M.., Ozawa S., Shizuma K., Yamamoto M. Early radiation survey of Iitate village, which was heavily contaminated by the Fukushima Daiichi accident, conducted on 28 and 29 March 2011. Health Phys. 2012; 102(6): 680–6.
  24. Shinkarev S., Gavrilin Yu., Khrouch V., Minenko V., Shemyakina E., Tretyakevitch S., et al. Chernobyl accident: Preliminary estimates of thyroid dose based on direct thyroid measurements conducted in Belarus. In: Harmonization of Radiation, Human Life and the Ecosystem, Proceedings (10th Congress of the International Radiation Protection Association). Hiroshima: International Radiation Protection Association; 2000: 11–260.
  25. Gavrilin Y.I., Khrouch V.T., Shinkarev S.M., Krysenko N.A., Skryabin A.M., Bouville A., et al. Chernobyl Accident: Reconstruction of Thyroid Dose for Inhabitants of the Republic of Belarus. Health Phys. 1999; 76(2): 105–19.
  26. Goulko G.M., Chumak V.V., Chepurny N.I., Henrichs K., Jacob P., Kairo I.A., et al. Estimation of thyroid doses for the evacuees from Pripyat. Radiat. Environ. Biophys. 1996; 35(2): 81–7.
  27. Shinkarev S.M., Voillequé P.G., Gavrilin Y.I., Khrouch V.T., Bouville A., Hoshi M., et al. Credibility of Chernobyl thyroid doses exceeding 10 Gy based on in-vivo measurements of 131I in Belarus. Health Phys. 2008; 94(2): 180–7.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Shinkarev S.M., Samoylov A.S., Granovskaya E.O., Korneva E.A., Kukhta B.A., Androsova A.A., Iatsenko V.N., 2024



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.