Man-made fine dispersed РМ10 and РМ2.5 in ambient air as a health risk factor and an object of management: domestic and international experience (analytical review)

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The aim was to review and analyze Russian and foreign research works, legal, regulatory and methodical documents that focus on investigating fine-dispersed particles in ambient air considering their influence on human health and external management of emissions. The materials were searched for in relevant databases including WoS, SCOPUS, eLIBRARY; we also examined legal, regulatory and methodical documents available at web-sites of the WHO, Russian authorities and relevant authorities of several foreign countries.

Multiple epidemiological and laboratory investigations confirm substantial health hazards posed by particles smaller than 10 µm (РМ10, РМ2.5). There is evidence that fine-dispersed fractions are a persistent component in emissions from industries, energy-producing facilities, and transport. The Russian methodical base for considering fine-dispersed dusts in emissions requires upgrading and improving as regards mandatory РМ10 and РМ2.5 inclusion into methods for identifying emission structures. It is also necessary to develop and approve methods for quantification of fine-dispersed particles in industrial emissions. Access to calculation and instrumental methods for establishing РМ10 and РМ2.5 masses in emissions allows correcting inventories of emission sources and proper state regulation of emissions through establishing safety rations of sufficiency of sanitary protection zones around enterprises. It also allows creating a more qualitative system for setting emission quotas where priority chemicals are identified on the basis of assessed health risks considering substantial contributions often made to them by fine-dispersed particles.

Contributions:
May I.V. – the study concept and design, writing the text, editing;
Zagorodnov S.Yu. – the concept and design of the study, the collection and processing of the material, writing the text;
Vaisman Ya.I. – processing of the material, editing.
All authors
are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.

Conflict of interest. The authors declare no conflict of interest.

Acknowledgement. The study had no sponsorship.

Received: October 14, 2024 / Revised: October 22, 2024 / Accepted: November 19, 2024 / Published: December 17, 2024

作者简介

Irina May

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies

Email: may@fcrisk.ru

DSc (Biology), professor, principal researcher-advisor to the Director of the Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, 614045, Russian Federation

e-mail: may@fcrisk.ru

Sergey Zagorodnov

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies

Email: Zagorodnov@fcrisk.ru

PhD (Engineering), Senior Research Associate, Head of the Expert Group in Laboratory of Complex Sanitary and Hygienic Monitoring Methods of the Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, 614045, Russian Federation

e-mail: Zagorodnov@fcrisk.ru

Yakov Vaisman

Perm National Research Polytechnic University

编辑信件的主要联系方式.
Email: eco@pstu.ru

DSc (Medicine), Professor of Environmental Protection Department, Perm National Polytechnic University, Perm, 614990, Russian Federation

e-mail: eco@pstu.ru

参考

  1. Dockery D.W., Pope C.A. 3rd, Xu X., Spengler J.D., Ware J.H., Fay M.E., et al. An association between air pollution and mortality in six U.S. cities. N. Engl. J. Med. 1993; 329(24): 1753–9. https://doi.org/10.1056/nejm199312093292401
  2. Schwartz J. Total suspended particulate matter and daily mortality in Cincinnati, Ohio. Environ. Health Perspect. 1994; 102(2): 186–9. https://doi.org/10.1289/ehp.94102186
  3. Pope C.A., Dockery D.W., Schwartz J. Review of epidemiological evidence of health effects of particulate air pollution. Inhal. Toxicol. 1995; 7(1): 1–18. https://doi.org/10.3109/08958379509014267
  4. Schwartz J. Air pollution and hospital admissions for respiratory disease. Epidemiology. 1996; 7(1): 20–8. https://doi.org/10.1097/00001648-199601000-00005
  5. Samoli E., Peng R., Ramsay T., Pipikou M., Touloumi G., Dominici F., et al. Acute effects of ambient particulate matter on mortality in Europe and North America: results from the APHENA Study. Environ. Health Perspect. 2008; 116(11): 1480–6. https://doi.org/10.1289/ehp.11345
  6. Heinrich J. Nonallergic respiratory morbidity improved along with a decline of traditional air pollution levels: a review. Eur. Respir. J. Suppl. 2003; 40: 64s–9s. https://doi.org/10.1183/09031936.03.00402603
  7. Anderson J.O., Thundiyil J.G., Stolbach A. Clearing the air: a review of the effects of particulate matter air pollution on human health. J. Med. Toxicol. 2012; 8(2): 166–75. https://doi.org/10.1007/s13181-011-0203-1
  8. Health effects of dust. Department of Health. Western Australia; 2022. Available at: https://www.healthywa.wa.gov.au/Articles/F_I/Health-effects-of-dust
  9. Wu J.Z., Ge D.D., Zhou L.F., Hou L.Y., Zhou Y., Li Q.Y. Effects of particulate matter on allergic respiratory diseases. Chronic Dis. Transl. Med. 2018; 4(2): 95–102. https://doi.org/10.1016/j.cdtm.2018.04.001
  10. Review of evidence on health aspects of air pollution – REVIHAAP Project. Copenhagen: WHO Regional Office for Europe; 2013. Available at: https://www.ncbi.nlm.nih.gov/books/NBK361803/
  11. Nakhratova O.V., Tsygankova D.P., Bazdyrev E.D. Impact of air pollution with particulate particles on the risk of cardiovascular diseases (review). Ekologiya cheloveka. 2022; 29(8): 531–46. https://doi.org/10.17816/humeco104609 https://elibrary.ru/osafti (in Russian)
  12. WHO. Air quality and health: Newsletter on the Sustainable Development Goals (SDGs): health-related challenges; 2018. Available at: https://apps.who.int/iris/handle/10665/340800 (in Russian)
  13. Curtis L., Rea W., Smith-Willis P., Fenyves E., Pan Y. Adverse health effects of outdoor air pollutants. Environ. Int. 2006; 32(6): 815–30. https://doi.org/10.1016/j.envint.2006.03.012
  14. Air quality guidelines for Europe. WHO Regional office for Europe. Copenhagen; 2000. Available at: https://wedocs.unep.org/handle/20.500.11822/8681
  15. Ochoa-Alvarado L.M., Zafra-Mejía C.A., Rondón-Quintana H.A. Multitemporal analysis of the influence of PM10 on human mortality according to Urban Land Cover. Atmosphere. 2022; 13(12): 19–49. https://doi.org/10.3390/atmos13121949
  16. Curtis L., Rea W., Smith-Willis P., Fenyves E., Pan Y. Adverse health effects of outdoor air pollutants. Environ. Int. 2006; 32(6): 815–30. https://doi.org/10.1016/j.envint.2006.03.012
  17. Revich B.A. Fine suspended particulates in ambient air and their health effects in megalopolises. Problemy ehkologicheskogo monitoringa i modelirovaniya ehkosistem. 2018; 29(3): 53–78. https://doi.org/10.21513/0207-2564-2018-3-53-78 https://elibrary.ru/yrxuvf (in Russian)
  18. Ivanenko A.V., Sudakova E.V., Skvortsov S.A., Bestuzheva E.V. Assessment of risks to the health of the population from air borne contaminants in certain areas of Moscow (based on the findings of on-going socio-hygienic monitoring). Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2017; 96(3): 206–11. https://doi.org/10.18821/0016-9900-2017-96-3-206-211 https://elibrary.ru/yhswjj (in Russian)
  19. Trippetta S., Sabia S., Caggiano R. Fine aerosol particles (PM1): natural and anthropogenic contributions and health risk assessment. Air Qual. Atmos. Health. 2016; 9(6): 621–9. https://doi.org/10.1007/s11869-015-0373-0
  20. Jakovljević I., Štrukil Z.S., Godec R., Bešlić I., Davila S., Pehnec G., et al. Pollution sources and carcinogenic risk of PAHS in PM1 particle fraction in an urban area. Int. J. Environ. Res. Public Health. 2020; 17(24): 1–21. https://doi.org/10.3390/ijerph17249587
  21. Tikhonova I.V., Zemlyanova M.A., Koldibekova Yu.V., Peskova E.V., Ignatova A.M. Hygienic assessment of aerogenic exposure to particulate matter and its impacts on morbidity with respiratory diseases among children living in a zone influenced by emissions from metallurgic production. Health Risk Analysis. 2020; (3): 60–68. https://doi.org/10.21668/health.risk/2020.3.07.eng https://elibrary.ru/oqwizs
  22. Liao Z., Nie J., Sun P. The impact of particulate matter (PM2.5) on skin barrier revealed by transcriptome analysis: Focusing on cholesterol metabolism. Toxicol. Rep. 2020; 7: 1–9. https://doi.org/10.1016/j.toxrep.2019.11.014
  23. Magnani N.D., Muresan X.M., Belmonte G., Cervellati F., Sticozzi C., Pecorelli A., et al. Skin damage mechanisms related to airborne particulate matter exposure. Toxicol. Sci. 2016; 149(1): 227–36. https://doi.org/10.1093/toxsci/kfv230
  24. Peters R., Ee N., Peters J., Booth A., Mudway I., Anstey K.J. Air pollution and dementia: a systematic review. J. Alzheimers Dis. 2019; 70(S1): S145–63. https://doi.org/10.3233/jad-180631
  25. Choi H., Kim S.H. Air pollution and dementia. Dement. Neurocogn. Disord. 2019; 18(4): 109–12. https://doi.org/10.12779/dnd.2019.18.4.109
  26. Cserbik D., Chen J.C., McConnell R., Berhane K., Sowell E.R., Schwartz J., et al. Fine particulate matter exposure during childhood relates to hemispheric-specific differences in brain structure. Environ. Int. 2020; 143: 105933. https://doi.org/10.1016/j.envint.2020.105933
  27. Poursafa P., Kelishadi R., Amini A., Amini A., Amin M.M., Lahijanzadeh M., et al. Association of air pollution and hematologic parameters in children and adolescents. J. Pediatr. 2011; 87(4): 350–6. https://doi.org/10.2223/jped.2115
  28. Quintana R., Serrano J., Gómez V., de Foy B., Miranda J., Garcia-Cuellar C., et al. The oxidative potential and biological effects induced by PM10 obtained in Mexico City and at a receptor site during the MILAGRO campaign. Environ. Pollut. 2011; 159(12): 3446–54. https://doi.org/10.1016/j.envpol.2011.08.022
  29. Nikolic M., Nikic D., Stankovic A. Effect of air pollution on red blood cells in children. Pol. J. Environ. Stud. 2008; 17(2): 267–71.
  30. Saldiva P.H., Clarke R.W., Coull B.A., Stearns R.C., Lawrence J., Murthy G.G., et al. Lung inflammation induced by concentrated ambient air particles is related to particle composition. Am. J. Respir. Crit. Care Med. 2002; 165(12): 1610–7. https://doi.org/10.1164/rccm.2106102
  31. Soukup J.M., Ghio A.J., Becker S. Soluble components of Utah Valley particulate pollution alter alveolar macrophage function in vivo and in vitro. Inhal. Toxicol. 2000; 12(5): 401–14. https://doi.org/10.1080/089583700196112
  32. Larionov A., Volobaev V., Zverev A., Vdovina E., Bach S., Schetnikova E., et al. Chemical composition and toxicity of PM10 and PM0.1 samples near open-pit mines and coal power stations. Life (Basel). 2022; 12(7): 1047. https://doi.org/10.3390/life12071047
  33. Zagorodnov S.Yu., Kokoulina A.A., Popova E.V. Studying of component and disperse structure of dust emissions of metallurgical complex enterprises for problems of estimation the population exposition. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk. 2015; 17(5–2): 451–56. https://elibrary.ru/vyzmjd (in Russian)
  34. WHO. WHO global air quality guidelines: particulate matter (PM2,5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Executive summary; 2021. (in Russian)
  35. Chekalov L.V., Smirnov M.E., Guzaev V.A. Development of technology for electric flue gas purification and reduction of particulate emissions. In: Ecology in the Energy Sector. II Scientific and Technical Conference with International Participation [Ekologiya v ehnergetike. II Nauchno-tekhnicheskaya konferentsiya s mezhdunarodnym uchastiem]. Moscow; 2021: 55–60. (in Russian)
  36. Andrishunas A.M., Kleyn S.V., Goryaev D.V., Balashov S.Yu., Zagorodnov S.Yu. Hygienic assessment of air protection activities at heat-and-power engineering enterprises. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2022; 101(11): 1290–8. https://doi.org/10.47470/0016-9900-2022-101-11-1290-1298 https://elibrary.ru/nvnitk (in Russian)
  37. Vorobev A.E., Datchenko V.V., Madaeva M.Z. Dust contamination of upland areas of the North Caucasus by mines. Science. Education. Engineering. 2021; (1): 9–16. https://elibrary.ru/tiecjz
  38. Snitsereva V.P. Sources of dust formation and integrated dusting at Zhezkazgan concentrating factories. Gornyi informatsionno-analiticheskii byulleten’ (nauchno-tekhnicheskii zhurnal). 2021; (S1–1): 38–46. https://doi.org/10.25018/0236_1493_2021_1_1_38 https://elibrary.ru/byxzuq (in Russian)
  39. Dormidontova T.V., Aliev E.R. The impact of road construction and reconstruction on the environment. Tendentsii razvitiya nauki i obrazovaniya. 2022; (87–3): 64–7. https://doi.org/10.18411/trnio-07-2022-96 https://elibrary.ru/ugkzrm (in Russian)
  40. Prosviryakova I.A., Shevchuk L.M. Hygienic assessment of PM10 and PM2.5 contents in the atmosphere and population health risk in zones influenced by emissions from stationary sources located at industrial enterprises. Health Risk Analysis. 2018; (2): 14–22. https://doi.org/10.21668/health.risk/2018.2.02.eng https://elibrary.ru/vtczvu
  41. Ulanova T.S., Antipeva M.V., Sukhikh E.A., Krylov A.A. Analysis of fine dust fractions in the atmospheric air near highways and intersections of a large industrial center. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Prikladnaya ehkologiya. Urbanistika. 2022; (2): 45–54. https://doi.org/10.15593/2409-5125/2022.02.05 https://elibrary.ru/zbriyd (in Russian)
  42. Oputina I.P., Kostyleva N.V. Identification by the results of analysis of law environmental practice, which may be influenced by the quality and correct application of methods for calculating emissions in the atmospheric air. Astrakhanskii vestnik ehkologicheskogo obrazovaniya. 2021; (6): 122–5. https://doi.org/10.36698/2304-5957-2021-6-122-125 https://elibrary.ru/cvalig (in Russian)
  43. Methodology for calculating emissions from combustion sources during oil and petroleum product spills; 1997. (in Russian)
  44. Methodology for determining and calculating emissions of pollutants from forest fires; 1997. (in Russian)
  45. Methodology for calculating emissions of pollutants into the atmospheric air from flare installations for burning associated petroleum gas (APG) with additional air supply (used on Gorenje facilities of YARGEO LLC or similar installations); 2020. (in Russian)
  46. Ehrlich C., Noll G., Kalkoff W.-D., Baumbach. G., Dreiseidler A. РM10, PM2.5 and PM1.0 emissions from industrial plants – results from measurement programmes in Germany. Atmos. Environ. 2007; 41(29): 6236–54. https://doi.org/10.1016/j.atmosenv.2007.03.059
  47. Managing Fugitive Dust. A guide for Compliance with the Air Regulatory Requirements for Particulate Matter Generation. Michigan Department of Environmental Quality; 2014. Available at: https://www.michigan.gov/-/media/Project/Websites/egle/Documents/Regulatory-Assistance/Guidebooks/Fug-Dust-Man.pdf?rev=1bffa8aa79524fdabe234a7c6bdcc82e
  48. Clean Healthy Air For All New Zealanders: The National Air Quality Compliance Strategy to Meet the PM10 Standard. Wellington: Ministry for the Environment Ministry for the Environment; 2011. Available at: https://environment.govt.nz/assets/Publications/Files/air-quality-compliance-strategy.pdf
  49. Compliance Monitoring and Emissions Testing of Discharges to Air: A Guide for the Management of Ambient Air Quality. Ministry for the Environment Wellington New Zealand; 1998. Available at: https://environment.govt.nz/assets/Publications/Files/discharges-to-air-compliance-aug98.pdf
  50. Good Practice Guide for Preparing Emission Inventories. Ministry for the Environment; 2001. Available at: https://environment.govt.nz/assets/Publications/Files/emissions-good-practie-guide.pdf
  51. Good Practice Guide for Assessing Discharges from Industry; 2016. Available at: https://environment.govt.nz/publications/good-practice-guide-for-preparing-emissions-inventories/
  52. Good Practice Guide for Assessing Discharges from Industry; 2016. Available at: https://environment.govt.nz/publications/good-practice-guide-for-preparing-emissions-inventories/
  53. Air Quality Monitoring and Data Management Guidebook for the States of the Gulf Cooperation Council. 2021. https://zoinet.org/wp-content/uploads/2023/02/Air-quality-monitoring_EN.pdf

补充文件

附件文件
动作
1. JATS XML

版权所有 © , 2025



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.