Parametric analysis of plasmochemical processes in electrodeless HFI and SHF discharges in iodine vapor

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this paper, parametric studies of kinetic processes of electrodeless high-frequency induction (HFI) and superhigh-frequency (SHF) discharges in plasma in iodine have been carried out within the framework of a global model. The dynamics of the formation of the component composition of the plasma has been obtained for different modes. It is shown that at small times an ion-ion plasma is formed, and at times from a few fractions to units of milliseconds the transition from ion-ion to electron-ion plasma occurs. The model made it possible to determine the most optimal modes of iodine plasma generation in modern electric rocket engines.

Sobre autores

A. Saifutdinova

Kazan National Research Technical University named after A.N. Tupolev – KAI

Autor responsável pela correspondência
Email: aliya_2007@list.ru
Rússia, Kazan

A. Makushev

Kazan National Research Technical University named after A.N. Tupolev – KAI

Email: aliya_2007@list.ru
Rússia, Kazan

S. Sysoyev

St. Petersburg State University

Email: aliya_2007@list.ru
Rússia, St. Petersburg

A. Saifutdinov

Kazan National Research Technical University named after A.N. Tupolev – KAI

Email: as.uav@bk.ru
Rússia, Kazan

Bibliografia

  1. Levchenko I. et al. // Applied Physics Reviews. 2018. V. 5. №. 1.
  2. Kopacz J.tR., Herschitz R., Roney J. //Acta Astronautica. 2020. V. 170. P. 93–105.
  3. Levchenko I. et al. // Nature communications. 2018. V. 9. №. 1. P. 879.
  4. Han A., Meng T., Jia S., Tong Y., Ning Z. // Vacuum. 2024. V. 221. P. 112867.
  5. Yu D. et al. // Plasma Sources Science and Technology. 2017. V. 26. №. 4. P. 04LT02.
  6. Tverdokhlebov O., Semenkin A. // 37th Joint propulsion conference and exhibit. 37th Joint propulsion conference and exhibit. 2001. P. 3350.
  7. Szabo J., Pote B., Paintal S., Robin M., Hiller A., Branam R.D., Huffman R.E. // Journal of Propulsion and Power. – 2012. V. 28. №. 4. P. 848–857.
  8. Dietz P., Becker F., Keil K., Holste K., Klar P.J. // 36th International Electric Propulsion Conference, Vienna, Austria. 2019.
  9. Performance of an iodine-fueled radio-frequency ion-thruster //The European Physical Journal D. 2018. V. 72. P. 1–7.
  10. Martinez J.M., Rafalskyi D., Zorzoli Rossi E., Aanesland A. An off-axis iodine propulsion system for the robusta-3A mission. 2020.
  11. Marmuse F., Lucken R., Drag C., Booth J.–P., Bourdon A., Chabert P., Aanesland A. // 36th International Electric Propulsion Conference (IEPC 2019). 2019.
  12. Yang J., Jia S., Zhang Z., Zhang X., Jin T., Li L., Cai Y., Cai J. // Plasma Science and Technology. 2020. V. 22. №. 9. P. 094006.
  13. Niu X., Li X., Liu H., Yu D. // The European Physical Journal D. 2019. V. 73. P. 1–8.
  14. Mazouffre S. //Plasma Sources Science and Technology. 2016. V. 25. №. 3. P. 033002.
  15. Saifutdinova A.A. et al. //IEEE Transactions on Plasma Science. 2022. V. 50. №. 4. P. 1144–1156.
  16. Saifutdinov A.I., Kustova E.V. // Journal of Applied Physics. 2021. V. 129. №. 2.
  17. Saifutdinov A., Timerkaev B. // Nanomaterials. 2023. V. 13. №. 13. P. 1966.
  18. Saifutdinov A.I. // Plasma Sources Science and Technology. 2022. V. 31. №. 9. P. 094008.
  19. Grondein P. et al. //Physics of Plasmas. 2016. V. 23. №. 3.
  20. Levko D., Raja L.L. // Journal of Applied Physics. 2021. V. 130. №. 17.
  21. Ambalampitiya H.B., Hamilt K.R., Zatsarinny O., Bartschat K., Turner M.A., Dzarasova A., Tennyson J. // Atoms. 2021. Т. 9. №. 4. С. 103.
  22. Kramida A., Ralchenko Y., Reader J., Team N.A. NIST Atomic Spectra Database (ver. 5.9), National Institute of Standards and Technology, Gaithersburg. MD. 2021. https://physics.nist.gov/asd
  23. Greaves C. //Journal of Electronics and Control. 1964. V. 17. P. 171–180.
  24. Yeung T.H. Y. Sayers J. // Proceedings of the Physical Society. Section B. 1957. V. 70. P. 663.
  25. Saifutdinov A.I. et al. //High Energy Chemistry. 2023. V. 57. №. 1. P. 35–52.
  26. Kemaneci E., Carbone E., Booth J.P., Graef W., van Dijk J., Kroesen G. // Plasma Sources Science and Technology. 2014. V. 23. №. 4. P. 045002.
  27. Tejero-del-Caz A. et al. // Plasma Sources Science and Technology. 2019. Т. 28. №. 4. С. 043001.
  28. Chabert P., Braithwaite N. Physics of radio-frequency plasmas. Cambridge University Press, 2011. P. 385.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024