Features of plasma electrochemical synthesis of platinum nanoparticles

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A comparative study of the morphology of Pt nanoparticles obtained as a result of plasma electrochemical dispersion of platinum electrodes in various modes and the state of the platinum surface after electrochemical action was carried out.

Full Text

Restricted Access

About the authors

R. A. Manzhos

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the RAS

Author for correspondence.
Email: rmanzhos@yandex.ru
Russian Federation, Chernogolovka

N. S. Komarova

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the RAS

Email: rmanzhos@yandex.ru
Russian Federation, Chernogolovka

A. V. Pugacheva

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the RAS

Email: rmanzhos@yandex.ru
Russian Federation, Chernogolovka

A. S. Kotkin

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the RAS

Email: rmanzhos@yandex.ru
Russian Federation, Chernogolovka

M. V. Zhidkov

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the RAS

Email: rmanzhos@yandex.ru
Russian Federation, Chernogolovka

I. I. Khodos

Institute for Problems of Microelectronics Technology and High-Purity Materials of the RAS

Email: rmanzhos@yandex.ru
Russian Federation, Chernogolovka

A. G. Krivenko

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the RAS

Email: rmanzhos@yandex.ru
Russian Federation, Chernogolovka

References

  1. Garlyyev B., Watzele S., Fichtner J. et al. // Nano research. 2021. P. 1–8. https://doi.org/10.1021/acscatal.9b04974.
  2. Paperzh K.O., Pavlets A.S., Alekseenko A.A. et al. // Inter. Journal of Hydrogen Energy. 2023. V. 48. № 59 P. 224014. https://doi.org/10.1016/j.ijhydene.2023.01.0
  3. Faddeev N.A., Kuriganova A.B., Leontyev I.N. et al. // Mend. Commun. 2024. V. 34. P. 442. https://doi.org/10.1016/j.mencom.2024.04.042
  4. Fichtner J., Watzele S., Garlyyev B. et al. // ACS Catal. 2020. V. 10. P. 3131. https://doi.org/10.1021/acscatal.9b04974
  5. Kuriganova A.B., Leontyeva D.V., Smirnova N.V. // Russian Chemical Bulletin. 2015. V. 64. P. 2769.
  6. Kochergin V.K., Manzhos R.A., Komarova N.S., et al. // High Energy Chemistry, 2022. V. 56. № 6. P. 487. https://doi.org/10.1134/S0018143922060091
  7. Kochergin V.K., Manzhos R.A., Komarova N.S., et al. // High Energy Chem. 2024. V. 58. № 3. P. 328. https://doi.org/10.1134/S0018143924700073

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Optical 1–3a (Optelics Hybrid Lasertec confocal microscope) and electron 1–3b (EM-30 Coxem scanning electron microscope) images of platinum foil after electrochemical action; 1–3c SEM (SUPRA 25) and 1–3d TEM (JEM-2100) images of Pt sputtering product deposits. Action types: 1 – +10 V/–10 V; 2 – cathode-anode plasma; 3 – anode plasma. Electron diffraction patterns of Pt nanoparticles are shown in insets 1–3d.

Download (3MB)

Copyright (c) 2025 Russian Academy of Sciences