Инерционное осаждение субмикронных аэрозолей в модельных волокнистых фильтрах из ультратонких волокон

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассмотрено влияние инерции субмикронных частиц на их осаждение в модельных тонковолокнистых фильтрах из стоксова потока. Методом граничной траектории рассчитаны коэффициенты захвата частиц волокном за счет эффектов инерции и зацепления в ячеечной модели фильтра и в ряду параллельных волокон, перпендикулярных направлению потока газа, в интервалах параметров зацепления R = 0.01–1, чисел Стокса Stk = 0–20 и Кнудсена Kn = 0–1. Расчеты согласуются с экспериментальными данными.

Об авторах

В. А. Кирш

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН

Автор, ответственный за переписку.
Email: va_kirsch@mail.ru
Россия, 119071, Москва, Ленинский просп. 31, корп. 4

Список литературы

  1. Fuchs N.A. The Mechanics of Aerosols. N.Y.: Dover, 1989.
  2. Davies C.N. Air Filtration. N.Y.: Academic Press, 1973.
  3. Brown R.C. Air Filtration. Oxford: Pergamon Press, 1993.
  4. Kirsch A.A., Stechkina I.B. The theory of aerosol filtration with fibrous filters, Ch. 4, in Fundamentals of Aerosol Science / Ed. by Shaw D.T. N.Y.: Wiley-Interscience. 1978. P. 165‒256.
  5. Chernyakov A.L., Kirsch A.A., Kirsch V.A. Elastic vibrations of a fiber due to impact of an aerosol particle and their influence on the efficiency of fibrous filters // Phys. Rev. E. 2011. V. 83. № 5. P. 056303. https://doi.org/10.1103/PhysRevE.83.056303
  6. Стечкина И.Б., Кирш В.А. Оптимизация параметров аэрозольных волокнистых фильтров // Коллоид. журн. 2001. Т. 63. № 4. С. 517–522. https://doi.org/10.1023/A:1016762107083
  7. Кирш В.А., Кирш А.А. Улавливание субмикронных аэрозольных частиц фильтрами из нановолокон // Коллоид. журн. 2023. Т. 85. № 1. С. 38‒46. https://doi.org/10.1134/S1061933X22600476
  8. Кирш В.А. Инерционное осаждение тяжелых аэрозольных частиц в волокнистых фильтрах // Теор. основы хим. технологии. 2005. Т. 39. № 1. С. 50–55. https://doi.org/10.1007/s11236-005-0028-1
  9. Волощук В.М. Введение в гидродинамику грубодисперсных аэрозолей. Л.: Гидрометеоиздат, 1971.
  10. Hairer E., Norsett S., Wanner G. Solving Ordinary Differential Equations I: Nonstiff Problems, 2-nd ed. Berlin: Springer-Verlag, 1993.
  11. Слезкин Н.А. Динамика вязкой несжимаемой жидкости. М.: ГИТТЛ, 1955.
  12. Wang C.Y. Stokes slip flow through a grid of circular cylinders // Phys. Fluids. 2002. V. 14. № 9. P. 3358‒3360. https://doi.org/10.1063/1.1499127
  13. Kolodziej J.A. Review of application of boundary collocation methods in mechanics of continuous media // Solid Mechanics Archives. 1987. V. 12. № 4. P. 187–231.
  14. Pich J. Pressure drop of fibrous filters at small Knudsen numbers // Ann. Occup. Hyg. 1966. V. 9. № 1. P. 23‒27. https://doi.org/10.1093/annhyg/9.1.23
  15. Ролдугин В.И., Кирш А.А., Емельяненко А.М. Моделирование аэрозольных фильтров при промежуточных числах Кнудсена // Коллоид. журн. 1999. Т. 61. № 4. С. 530‒542.
  16. Кирш А.А., Стечкина И.Б. Инерционное осаждение аэрозолей в модельных фильтрах при малых числах Рейнольдса // Коллоид. журн. 1977. Т. 39. № 1. С. 36‒43.
  17. Miyagi T. Viscous flow at low Reynolds numbers past an infinite row of equal circular cylinders // J. Phys. Soc. Japan. 1958. V. 13. № 5. P. 493−496. https://doi.org/10.1143/JPSJ.13.493
  18. Muller T.K., Meyer J., Kasper G. Low Reynolds number drag and particle collision efficiency of a cylindrical fiber within a parallel array // J. Aerosol Sci. 2014. V. 77. № 11. P. 50–66. https://doi.org/10.1016/j.jaerosci.2014.07.007
  19. Gallily I. On the filtration of aerosols by filter models of various porosities // J. Colloid Sci. 1957. V. 12. № 2. P. 161–172.
  20. Kuwabara S. The forces experienced by randomly distributed parallel circular cylinders or spheres in viscous flow at small Reynolds numbers // J. Phys. Soc. Japan. 1959. V. 14. № 4. P. 527–532. https://doi.org/10.1143/JPSJ.14.527
  21. Kirsch A.A., Fuchs N.A. The fluid flow in a system of parallel cylinders perpendicular to the flow direction at small Reynolds numbers // J. Phys. Soc. Japan. 1967. V. 22. P. 1251–1255. https://doi.org/10.1143/JPSJ.22.1251
  22. Kirsch A.A., Fuchs N.A. Studies of fibrous aerosol filters – II. Pressure drops in systems of parallel cylinders // Ann. Occup. Hyg. 1967. V. 10. № 1. P. 23–30. https://doi.org/10.1093/annhyg/10.1.23
  23. Головин А.М., Лопатин В.А. Течение вязкой жидкости в двоякопериодических рядах цилиндров // ПМТФ. 1969. Т. 9. № 2. С. 99–105. https://doi.org/10.1007/BF00913184
  24. Sangani A.S., Acrivos A. Slow flow past periodic arrays of cylinders with application to heat transfer // Int. J. Multiphase Flow. 1982. V. 8. № 3. P. 193–206. https://doi.org/10.1016/0301-9322(82)90029-5
  25. Yeh H.-C., Liu B.Y.H. Aerosol filtration by fibrous filters – I. Theoretical // J. Aerosol Sci. 1974. V. 5. № 2. P. 191–204. https://doi.org/10.1016/0021-8502(74)90049-4
  26. Yeh H.-C. A fundamental study of aerosol filtration by fibrous filters. Ph.D. Thesis. Minneapolis: University of Minnesota, 1972.
  27. Ramarao B.V., Tien C., Mohan S. Calculation of single fiber efficiencies for interception and impaction with superposed Brownian motion // J. Aerosol Sci. 1994. V. 25. № 2. P. 295–313. https://doi.org/10.1016/0021-8502(94)90081-7
  28. Кирш В.А. Инерционное осаждение аэрозольных частиц в волокнистых фильтрах // Коллоид. журн. 2004. Т. 66. № 5. С. 613–618. https://doi.org/10.1023/B:COLL.0000043835.00525.83
  29. Стечкина И.Б., Кирш А.А., Фукс Н.А. Исследования в области волокнистых аэрозольных фильтров // Коллоид. журн. 1969. Т. 31. № 1. С. 121–126.
  30. Стечкина И.Б., Кирш А.А., Фукс Н.А. Влияние инерции на коэффициент захвата аэрозольных частиц на цилиндрах при малых числах Стокса // Коллоид. журн. 1970. Т. 32. № 3. С. 467.
  31. Левин Л.М. Исследования по физике грубодисперсных аэрозолей, М.: Изд. АН СССР, 1961.
  32. Wong J.B., Ranz W.E., Johnstone H.F. Collection efficiency of aerosol particles and resistance to flow through fiber mats // J. Appl. Phys. 1956. V. 27. № 2. P. 161–170. https://doi.org/10.1063/1.1722328
  33. Flagan R.C., Seinfeld J.H. Fundamentals of Air Pollution Engineering, Ch. 7. P. 441. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1988.
  34. Натансон Г.Л. Влияние скольжения на эффект касания при захвате амикроскопических частиц цилиндром из потока // Коллоид. журн. 1960. Т. 24. № 1. С. 52−54.
  35. Albertoni S., Cereignani C., Gutusso L. Numerical evaluation of the slip coefficient // Phys. Fluids. 1963. V. 6. № 7. P. 993–996. https://doi.org/10.1063/1.1706857
  36. Zhao S., Povitsky A. A hybrid molecular and continuum method for low-Reynolds-number flows // Nonlinear Analysis. 2009. V. 71. № 12. P. e2551–e2564. https://doi.org/10.1016/j.na.2009.05.069

© В.А. Кирш, 2023