Влияние условий получения детонационного наноалмаза на состав поверхности и устойчивость его водных золей
- Авторы: Волкова А.В.1, Савельев Д.А.1, Чуйков Н.С.1, Водолажский В.А.1, Ермакова Л.Э.1
-
Учреждения:
- Санкт-Петербургский государственный университет
- Выпуск: Том 87, № 1 (2025)
- Страницы: 3-15
- Раздел: Статьи
- Статья получена: 28.05.2025
- Статья опубликована: 24.01.2025
- URL: https://medjrf.com/0023-2912/article/view/680859
- DOI: https://doi.org/10.31857/S0023291225010017
- EDN: https://elibrary.ru/UTFSII
- ID: 680859
Цитировать
Аннотация
В настоящей работе проведено исследование влияния дополнительной обработки порошка детонационного наноалмаза (ДНА) базовой очистки на состав поверхности частиц ДНА, их электрокинетические свойства, а также агрегативную устойчивость в растворах индифферентного электролита (NaCl) в широком диапазоне рН. Установлено, что более высокая степень очистки образцов и увеличение количества протонированных карбоксильных групп на поверхности частиц ДНА вследствие дополнительной кислотной и термоаммиачной обработки приводят к смещению положения изоэлектрической точки (ИЭТ) от рН 7.0 для исходного образца до рН 6.3 и рН 6.0 соответственно. Показано, что величины порогов коагуляции гидрозолей при естественном рН и положение зон устойчивости в 10–3 М растворе хлорида натрия находятся в полном соответствии со значениями ИЭТ. Наибольшие пороговые значения при рН 5.8 наблюдаются для исходного ДНА, тогда как для дисперсии частиц ДНА после термоаммиачной обработки быстрая коагуляция протекает уже при концентрации 10–4 М. Показано также, что зоны агрегативной устойчивости для дополнительно обработанных образцов ДНА практически совпадают. В случае ДНА базовой очистки зона устойчивости в области положительных значений дзета-потенциала расширяется, а в области отрицательных значений устойчивости не наблюдается, вероятно, вследствие частичного растворения поверхностных примесей при высоких рН и перехода их в ионной форме в раствор, что вызывает коагуляцию частиц ДНА.
Полный текст

Об авторах
А. В. Волкова
Санкт-Петербургский государственный университет
Автор, ответственный за переписку.
Email: anna.volkova@spbu.ru
Россия, 199034, Санкт-Петербург, Университетская наб., 7-9
Д. А. Савельев
Санкт-Петербургский государственный университет
Email: anna.volkova@spbu.ru
Россия, 199034, Санкт-Петербург, Университетская наб., 7-9
Н. С. Чуйков
Санкт-Петербургский государственный университет
Email: anna.volkova@spbu.ru
Россия, 199034, Санкт-Петербург, Университетская наб., 7-9
В. А. Водолажский
Санкт-Петербургский государственный университет
Email: anna.volkova@spbu.ru
Россия, 199034, Санкт-Петербург, Университетская наб., 7-9
Л. Э. Ермакова
Санкт-Петербургский государственный университет
Email: anna.volkova@spbu.ru
Россия, 199034, Санкт-Петербург, Университетская наб., 7-9
Список литературы
- ДолматовВ.Ю. Ультрадисперсные алмазы детонационного синтеза: свойства и применение // Успехи химии. 2001. Т. 70. № 7. С. 686–708. https://doi.org/10.1070/RC2001v070n07ABEH000665
- Долматов В.Ю. Детонационные наноалмазы в маслах и смазках // Сверхтвердые материалы. 2010. Т. 32. № 1. С. 19–28.
- Volkov D.S., Krivoshein P.K., Mikheev I.V., Proskurnin M.A. Pristine detonation nanodiamonds as regenerable adsorbents for metal cations // Diamond and Related Materials. 2020. V. 110. P. 108121. https://doi.org/10.1016/j.diamond.2020.108121
- Peristyy A., Paull B., Nesterenko P.N. Ion-exchange properties of microdispersed sintered detonation nanodiamond // Adsorption. 2016. V. 22. P. 371–383. https://doi.org/10.1007/s10450-016-9786-9
- Aleksenskii A.A, Chizhikova A.S., Kuular V.I.et al. Basic properties of hydrogenated detonation nanodiamonds // Diamond and Related Materials. 2024. V. 142. P. 110733. https://doi.org/10.1016/j.diamond.2023.110733
- Turcheniuk K., Mochalin V.N. Biomedical applications of nanodiamond // Nanotechnology. 2017. V. 28. P. 252001–252027. https://doi.org/10.1088/1361-6528/aa6ae4
- Schrand A.M., Ciftan Hens S.A., Shenderova O.A. Nanodiamond particles: Properties and perspectives for bioapplications // Critical Reviews in Solid State and Materials Sciences. 2009. V. 34. № 1–2. P. 18–74. https://doi.org/10.1080/10408430902831987
- Rosenholm J.M., Vlasov I.I., Burikov S.A. et al. Nanodiamond-based composite structures for biomedical imaging and drug delivery // Journal of Nanoscience and Nanotechnology. 2015. V. 15. № 2. P. 959–971. https://doi.org/10.1166/jnn.2015.9742
- Xu J., Chow E. Biomedical applications of nanodiamonds: From drug-delivery to diagnostics // SLAS Technology. 2023. V. 28. №4. P. 214–222. https://doi.org/10.1016/j.slast.2023.03.007
- Чиганова Г.А., Государева Е.Ю. Структурообразование в водных дисперсиях детонационных наноалмазов // Российские нанотехнологии. 2016. Т. 11. № 7–8. С. 25–29.
- Соловьёва К.Н., Беляев В.Н., Петров Е.А. Исследование свойств детонационных наноалмазов в зависимости от технологии глубокой очистки // Южно-Сибирский научный вестник. 2020. Т. 21. № 3. С. 62–67. https://doi.org/10.25699/SSSB.2020.21.3.010
- Соловьёва К.Н., Петров Е.А., Беляев В.Н. Основы технологии финишной очистки детонационных наноалмазов // Вестник технологического университета. 2019. Т. 22. № 12. С. 85–87.
- Shenderova O., Petrov I., Walsh J. et al. Modification of detonation nanodiamonds by heat treatment in air // Diamond & Related Materials. 2006. V. 15. P. 1799–1803 https://doi.org/10.1016/j.diamond.2006.08.032
- Шарин П.П., Сивцева А.В., Попов В.И. Термоокисление на воздухе нанопорошков алмазов, полученных механическим измельчением и методом детонационного синтеза // Известия вузов. Порошковая металлургия и функциональные покрытия. 2022. № 4. С. 67–83. https://doi.org/10.17073/1997-308X-2022-4-67-83
- Osswald S., Yushin G., Mochalin V. et al. Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air // Journal of the American Chemical Society. 2006. V. 128. P. 11635–11642
- Кулакова И.И. Модифицирование детонационного наноалмаза: влияние на его физико-химические свойства // Российский химический журнал. 2004. Т. 48. № 5. С. 97–106.
- Arnault J.C., Girard H.A. Hydrogenated nanodiamonds: Synthesis and surface properties //Current Opinion in Solid State and Materials Science. 2017. V. 21. P. 10–16. https://doi.org/10.1016/j.cossms.2016.06.007
- Williams O.A., Hees J., Dieker C. et al. Size-dependent reactivity of diamond nanoparticles // ACS Nano. 2010. V. 4. № 8. P. 4824–4830. https://doi.org/10.1021/nn100748k
- Gines L., Sow M., Mandal S. et al. Positive zeta potential of nanodiamonds // Nanoscale. 2017. V. 9. P. 12549–12555. https://doi.org/10.1039/C7NR03200E
- Terada D., Osawa E., So F. et al. A simple and soft chemical deaggregation method producing single-digit detonation nanodiamonds // Nanoscale Adv. 2022. V. 4. P. 2268–2277. https://doi.org/10.1039/D1NA00556A
- Batsanov S. S., Dan’kin D. A., Gavrilkin S. M. et al. Structural changes in colloid solutions of nanodiamond // New J. Chem. 2020. V. 44 P. 1640–1647. https://doi.org/10.1039/C9NJ05191K
- Petrova N., Zhukov A., Gareeva F. et al. Interpretation of electrokinetic measurements of nanodiamond particles // Diamond and Related Materials. 2012. V. 30. P. 62–69. https://doi.org/10.1016/j.diamond.2012.10.004
- Gareeva F., Petrova N., Shenderova O., Zhukov A. Electrokinetic properties of detonation nanodiamond aggregates inaqueous KCl solutions // Colloids and Surfaces A: Physicochem. Eng. Aspects. 2014. V. 440. P. 202–207. https://doi.org/10.1016/j.colsurfa.2012.08.055
- Жуков А. Н., Швидченко А.В., Юдина Е.Б. Электроповерхностные свойства гидрозолей детонационного наноалмаза в зависимости от размера дисперсных частиц // Коллоидный журнал. 2020. Т. 82. № 4. С. 416–422. https://doi.org/10.31857/S0023291220040175
- Сычёв Д. Ю., Жуков А. Н., Голикова Е. В., Суходолов Н. Г. Влияние простых электролитов на коагуляцию гидрозолей монодисперсного отрицательно заряженного детонационного наноалмаза // Коллоидный журнал. 2017. Т. 79. № 6. С. 785–791. https://doi.org/10.7868/S0023291217060118
- Mchedlov-Petrossyan N. O., Kamneva N. N., Mary-nin A. I. et al. Colloidal properties and behaviors of 3 nm primary particles of detonation nanodiamonds in aqueous media // Phys. Chem. Chem. Phys. 2015. V. 17. P. 16186–16203. https://doi.org/10.1039/C5CP01405K
- Mchedlov-Petrossyan N. O., Kamneva N. N., Kryshtal A. P. et al. The properties of 3 nm-sized detonation diamond from the point of view of colloid science // Ukr. J. Phys. 2015. V. 60. Р. 932–937. https://doi.org/10.15407/ujpe60.09.0932
- Mchedlov-Petrossyan N. O., Kriklya N. N., Kryshtal A. P. et al. The interaction of the colloidal species in hydrosols of nanodiamond with inorganic and organic electrolytes // Journal of Molecular Liquids. 2019. V. 283. P. 849–859. https://doi.org/10.1016/j.molliq.2019.03.095
- Волкова А.В., Белобородов А.А., Водолажский В.А. и др. Влияние рН и концентрации индифферентного электролита на агрегативную устойчивость водного золя детонационного алмаза // Коллоидный журнал. 2024. Т. 86. № 2. С. 169–192. https://doi.org/10.31857/S0023291224020031
- Petit T., Puskar L. FTIR spectroscopy of nanodiamonds: Methods and interpretation // Diamond & Related Materials. 2018. V. 89. P. 52–66. https://doi.org/10.1016/j.diamond.2018.08.005
- Shenderova O., Panich A.M., Moseenkov S. et al. Hydroxylated detonation nanodiamond: FTIR, XPS, and NMR studies // Phys. Chem. C. 2011. V. 115. № 39. P. 19005–19011. https://doi.org/10.1021/jp205389m
- Stehlik S., Mermoux M., Schummer B. et al. Size effects on surface chemistry and Raman spectra of sub-5 nm oxidized high-pressure high-temperature and detonation nanodiamonds // J. Phys. Chem. C. 2021. V. 125. P. 5647−5669. https://doi.org/10.1021/acs.jpcc.0c09190
- Алексенский А. Е., Байдакова М. В., Вуль А. Я., Сиклицкий В. Структура алмазного нанокластера // Физика твердого тела. 1999. Т. 41. № 4. С. 740—743.
- Шарин П.П., Сивцева А.В., Яковлева С.П. и др. Сравнение морфологических и структурных характеристик частиц нанопорошков, полученных измельчением природного алмаза и методом детонационного синтеза // Известия вузов. Порошковая металлургия и функциональные покрытия. 2019. Т. 4. С. 55–67. https://doi.org/10.17073/1997-308X-2019-4-55-67
- Frese N., Mitchell S.T., Bowers A. et al. Diamond-like carbon nanofoam from low-temperature hydrothermal carbonization of a sucrose/naphthalene precursor solution // C Journal of Carbon Research. 2017. V. 3. № 3. P. 23. https://doi.org/10.3390/c3030023
- Lim D. G., Kim K. H., Kang E. et al. Comprehensive evaluation of carboxylated nanodiamond as a topical drug delivery system // International Journal of Nanomedicine. 2016. V. 11. P. 2381–2395. https://doi.org/10.2147/IJN.S104859
- Thomas A., Parvathy M.S., Jinesh K.B. Synthesis of nanodiamonds using liquid-phase laser ablation of graphene and its application in resistive random access memory // Carbon Trends. 2021. V. 3. P. 100023. https://doi.org/10.1016/j.cartre.2020.100023
- Petit T., Arnault J.C., Girard H. A. et al. Early stages of surface graphitization on nanodiamond probed by x-ray photoelectron spectroscopy // Physical Review B – Condensed Matter and Materials Physics. 2011. V. 84. № 23. P. 233407. https://doi.org/10.1103/PhysRevB.84.233407
- Lan G., Qiu Y., Fan J. et al. Defective graphene@diamond hybrid nanocarbon material as an effective and stable metal-free catalyst for acetylene hydrochlorination // Chemical Communications. 2019. V. 55. P. 1430–1433. https://doi.org/10.1039/C8CC09361J
- Testolin A., Cattaneo S., Wang W. et al. Cyclic voltammetry characterization of Au, Pd, and AuPd nanoparticles supported on different carbon nanofibers // Surfaces. 2019. V. 2. № 1. P. 205–215 https://doi.org/10.3390/surfaces2010016
- Жуков А.Н., Гареева Ф.Р., Алексенский А.Е. Комплексное исследование электроповерхностных свойств агломератов детонационного наноалмаза в водных растворах КСl // Коллоидный журнал. 2012. Т. 74. № 4. C. 483–491.
Дополнительные файлы
