SERS tags based on silica microspheres with adsorbed gold nanostars

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

SERS tags are of great interest as bioanalysis platforms due to their combination of strong optical signal, photostability, and narrow spectral lines. Despite significant progress in the synthesis of new types of SERS tags based on gold nanoparticles, obtaining microparticles with a Raman scattering intensity sufficient for detection of a single tag using a conventional Raman microscope is not a trivial task. In this paper, hybrid colloidal nanocomposites based on silica microparticles and gold nanostars (AuNSTs) with the composition SiO2/AuNSTs/SiO2 were synthesized and characterized. Two types of gold nanostars, one with a plasmon resonance at 700 nm and the other with two maxima at 650 and 900 nm, were pre-synthesized and adsorbed on the surface of monodisperse colloidal silica particles with a diameter of 1.5 μm. Three types of thiolated aromatic molecules were used as Raman reporters: 4-nitrothiophenol, naphthalenethiol, and 1,4-benzenedithiol. The possibility of measuring the SERS signal from a single microparticle with an intensity variation of no more than 20% has been demonstrated, as well as the possibility of multiplex determination of various microparticles in one Raman image. A comprehensive assessment of the stability, including photostability, of the measured SERS signal over time was carried out when the physicochemical parameters of the microenvironment changed.

全文:

受限制的访问

作者简介

О. Inozemtseva

Саратовский государственный университет им. Н.Г. Чернышевского; Институт биохимии и физиологии растений и микроорганизмов Российской академии наук – обособленное структурное подразделение ФГБУН Федеральный исследовательский центр “Саратовский научный центр РАН”

编辑信件的主要联系方式.
Email: Inozemtsevaoa@mail.ru
俄罗斯联邦, ул. Астраханская, 83, Саратов, 410012; просп. Энтузиастов, 13, Саратов, 410049

E. Prikhozhdenko

Саратовский государственный университет им. Н.Г. Чернышевского

Email: Inozemtsevaoa@mail.ru
俄罗斯联邦, ул. Астраханская, 83, Саратов, 410012

A. Kartashova

Саратовский государственный университет им. Н.Г. Чернышевского

Email: Inozemtsevaoa@mail.ru
俄罗斯联邦, ул. Астраханская, 83, Саратов, 410012

Yu. Tyunina

Саратовский государственный университет им. Н.Г. Чернышевского; Институт биохимии и физиологии растений и микроорганизмов Российской академии наук – обособленное структурное подразделение ФГБУН Федеральный исследовательский центр “Саратовский научный центр РАН”

Email: Inozemtsevaoa@mail.ru
俄罗斯联邦, ул. Астраханская, 83, Саратов, 410012; просп. Энтузиастов, 13, Саратов, 410049

A. Zakharevich

Саратовский государственный университет им. Н.Г. Чернышевского

Email: Inozemtsevaoa@mail.ru
俄罗斯联邦, ул. Астраханская, 83, Саратов, 410012

A. Burov

Институт биохимии и физиологии растений и микроорганизмов Российской академии наук – обособленное структурное подразделение ФГБУН Федеральный исследовательский центр “Саратовский научный центр РАН”

Email: Inozemtsevaoa@mail.ru
俄罗斯联邦, просп. Энтузиастов, 13, Саратов, 410049

B. Khlebtsov

Институт биохимии и физиологии растений и микроорганизмов Российской академии наук – обособленное структурное подразделение ФГБУН Федеральный исследовательский центр “Саратовский научный центр РАН”

Email: Inozemtsevaoa@mail.ru
俄罗斯联邦, просп. Энтузиастов, 13, Саратов, 410049

参考

  1. Schlücker S. Surface‐enhanced Raman spectroscopy: concepts and chemical applications // Angew. Chemie. Int. Ed. 2014. V. 53. № 19. P. 4756–4795. https://doi.org/10.1002/anie.201205748
  2. Nie S., Emory S.R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering // Science 1997. V. 275. № 5303. P. 1102–1106. https://doi.org/10.1126/science.275.5303.1102
  3. Michaels A.M., Nirmal M., Brus L.E. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals // J. Am. Chem. Soc. 1999. V. 121. № 43. P. 9932–9939. https://doi.org/10.1021/ja992128q
  4. Jiang., Bosnick K., Maillard M. et al. Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals // J. Phys. Chem. B. 2003. V. 107. № 37. P. 9964–9972. https://doi.org/10.1021/jp034632u
  5. Wang Y., Yan B., Chen L. SERS tags: novel optical nanoprobes for bioanalysis // Chem. Rev. 2013. V. 113. № 3. P. 1391–1428. https://doi.org/10.1021/cr300120g
  6. Wang Z., Zong S., Wu L. et al. SERS-activated platforms for immunoassay: probes, encoding methods, and applications // Chem. Rev. 2017. V. 17. № 12. P. 7910–7963. https://doi.org/10.1021/acs.chemrev.7b00027
  7. Laing S., Jamieson L.E., Faulds K. et al. Surface-enhanced Raman spectroscopy for in vivo biosensing // Nat. Rev. Chem. 2017. V. 1. № 8. P. 0060. https://doi.org/10.1038/s41570-017-0060
  8. Smith B.R., Gambhir S.S. Nanomaterials for in vivo imaging // Chem. Rev. 2017. V. 117. № 3. P. 901–986. https://doi.org/10.1021/acs.chemrev.6b00073
  9. Wang R., Yu C., Yu F. et al. Molecular fluorescent probes for monitoring pH changes in living cells // TrAC Trends Anal. Chem. 2010. V. 29. № 9. P. 1004–1013. https://doi.org/10.1016/j.trac.2010.05.005
  10. Wang Y., Chen L. Quantum dots, lighting up the research and development of nanomedicine // Nanomed. Nanotech. Biol. Med. 2011. V. 7. № 4. P. 385–402. https://doi.org/10.1016/j.nano.2010.12.006
  11. Kneipp K., Wang Y., Kneipp H. et al. Single molecule detection using surface-enhanced Raman scattering (SERS) // Phys. Rev. Lett. 1997. V. 78. № 9. P. 1667–1670. https://doi.org/10.1103/PhysRevLett.78.1667
  12. Cao Y.C., Jin R., Mirkin C.A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection // Science. 2002. V. 297. № 5586. P. 1536–1540. https://doi.org/10.1126/science.297.5586.1536
  13. Yuan H., Fales A.M., Khoury C.G. et al. Spectral characterization and intracellular detection of surface‐enhanced Raman scattering (SERS)‐encoded plasmonic gold nanostars // J. Raman. Spectrosc. 2013. V. 44. № 2. P. 234–239. https://doi.org/10.1002/jrs.4172
  14. Wang Y., Seebald J.L., Szeto D.P. et al. Biocompatibility and biodistribution of surface-enhanced Raman scattering nanoprobes in zebrafish embryos: in vivo and multiplex imaging // ACS Nano. 2010. V. 4. № 7. P. 4039–4053. https://doi.org/10.1021/nn100351h
  15. Doering W.E., Nie S. Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering // Anal. Chem. 2003. V. 75. № 22. P. 6171–6176. https://doi.org/10.1021/ac034672u
  16. Qian X., Peng X.-H., Ansari D.O. et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags // Nat. Biotechnol. 2008. V. 26. № 1. P. 83–90. https://doi.org/10.1038/nbt1377
  17. Cheng Y., Samia A.C., Meyers J.D. et al. Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer // J. Am. Chem. Soc. 2008. V. 130. № 32. P. 10643–10647. https://doi.org/10.1021/ja801631c
  18. Ghosh P., Han G., De M. et al. Gold nanoparticles in delivery applications // Adv. Drug. Deliv. Rev. 2008. V. 60. № 11. P. 1307–1315. https://doi.org/10.1016/j.addr.2008.03.016
  19. Grubisha D.S., Lipert R.J., Park H.-Y. et al. Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels // Anal. Chem. 2003. V. 75. № 21. P. 5936–5943. https://doi.org/10.1021/ac034356f
  20. Wang H., Kundu J., Halas N.J. Plasmonic nanoshell arrays combine surface‐enhanced vibrational spectroscopies on a single substrate // Angew. Chemie. Int. Ed. 2007. V. 46. № 47. P. 9040–9044. https://doi.org/10.1002/anie.200702072
  21. Lal S., Grady N.K., Kundu J. et al. Tailoring plasmonic substrates for surface enhanced spectroscopies // Chem. Soc. Rev. 2008. V. 37. № 5. P. 898. https://doi.org/10.1039/b705969h
  22. Schwartzberg A.M., Oshiro T.Y., Zhang J.Z. et al. Improving nanoprobes using surface-enhanced Raman scattering from 30-nm hollow gold particles// Anal. Chem. 2006. V. 78. № 13. P. 4732–4736. https://doi.org/10.1021/ac060220g
  23. Ochsenkühn M.A., Jess P.R.T., Stoquert H. et al. Nanoshells for surface-enhanced Raman spectroscopy in eukaryotic cells: cellular response and sensor development // ACS Nano. 2009. V. 3. № 11. P. 3613–3621. https://doi.org/10.1021/nn900681c
  24. Rycenga M., Wang Z., Gordon E. et al. Probing the photothermal effect of gold‐based nanocages with surface‐enhanced Raman scattering (SERS) // Angew. Chemie. Int. Ed. 2009. V. 48. № 52. P. 9924–9927. https://doi.org/10.1002/anie.200904382
  25. Fang J., Lebedkin S., Yang S. et al. A new route for the synthesis of polyhedral gold mesocages and shape effect in single-particle surface-enhanced Raman spectroscopy // Chem. Commun. 2011. V. 47. № 18. P. 5157. https://doi.org/10.1039/c1cc10328h
  26. Boca S.C., Astilean S. Detoxification of gold nanorods by conjugation with thiolated poly(ethylene glycol) and their assessment as SERS-active carriers of Raman tags // Nanotech. 2010. V. 21. № 23. P. 235601. https://doi.org/10.1088/0957-4484/21/23/235601
  27. Jiang L., Qian J., Cai F. et al. Raman reporter-coated gold nanorods and their applications in multimodal optical imaging of cancer cells // Anal. Bioanal. Chem. 2011. V. 400. № 9. P. 2793–2800. https://doi.org/10.1007/s00216-011-4894-6
  28. Su P.-J., Wu M.-H., Wang H.-M. et al. Circulating tumour cells as an independent prognostic factor in patients with advanced oesophageal squamous cell carcinoma undergoing chemoradiotherapy // Sci. Rep. 2016. V. 6. № 1. P. 31423. https://doi.org/10.1038/srep31423
  29. Senthil Kumar P., Pastoriza-Santos I., Rodríguez-González B. et al. High-yield synthesis and optical response of gold nanostars // Nanotech. 2008. V. 19. № 1. P. 015606. https://doi.org/10.1088/0957-4484/19/01/015606
  30. Barbosa S., Agrawal A., Rodríguez-Lorenzo L. et al. Tuning size and sensing properties in colloidal gold nanostars // Langmuir. 2010. V. 26. № 18. P. 14943–14950. https://doi.org/10.1021/la102559e
  31. Guerrero-Martínez A., Barbosa S., Pastoriza-Santos I. et al. Nanostars shine bright for you // Curr. Opin. Colloid. Interface. Sci. 2011. V. 16. № 2. P. 118–127. https://doi.org/10.1016/j.cocis.2010.12.007
  32. Fang J., Huang Y., Li X. et al. Aggregation and surface‐enhanced Raman activity study of dye‐coated mixed silver–gold colloids // J. Raman. Spectrosc. 2004. V. 35. № 11. P. 914–920. https://doi.org/10.1002/jrs.1225
  33. Wei G., Zhou H., Liu Z. et al. A simple method for the preparation of ultrahigh sensitivity surface enhanced Raman scattering (SERS) active substrate // Appl. Surf. Sci. 2005. V. 240. № 1–4. P. 260–267. https://doi.org/10.1016/j.apsusc.2004.06.116
  34. Su X., Zhang J., Sun L. et al. Composite organic−inorganic nanoparticles (coins) with chemically encoded optical signatures // Nano. Lett. 2005. V. 5. № 1. P. 49–54. https://doi.org/10.1021/nl0484088
  35. Zhang G., Qu G., Chen Y. et al. Controlling carbon encapsulation of gold nano-aggregates as highly sensitive and spectrally stable SERS tags for live cell imaging // J. Mater. Chem. B. 2013. V. 1. № 35. P. 4364. https://doi.org/10.1039/c3tb20801j
  36. Gandra N., Abbas A., Tian L. et al. Plasmonic planet–satellite analogues: hierarchical self-assembly of gold nanostructures // Nano. Lett. 2012. V. 12. № 5. P. 2645–2651. https://doi.org/10.1021/nl3012038
  37. Rossner C., Fery A. Planet-satellite nanostructures from inorganic nanoparticles: from synthesis to emerging application // MRS Commun. 2020. V. 10. № 1. P. 112–122. https://doi.org/10.1557/mrc.2019.163
  38. Wu L.-A., Li W.-E., Lin D.-Z. et al. Three-dimensional sers substrates formed with plasmonic core-satellite nanostructures // Sci. Rep. 2017. V. 7. № 1. P. 13066. https://doi.org/10.1038/s41598-017-13577-9
  39. Meng D., Ma W., Wu X. et al. DNA‐driven two‐layer core–satellite gold nanostructures for ultrasensitive microRNA detection in living cells // Small. 2020. V. 16. № 23. https://doi.org/10.1002/smll.202000003
  40. San Juan A.M.T., Chavva S.R., Tu D. et al. Synthesis of SERS-active core–satellite nanoparticles using heterobifunctional PEG linkers // Nanoscale. Adv. 2022. V. 4. № 1. P. 258–267. https://doi.org/10.1039/D1NA00676B
  41. Khlebtsov N.G., Lin L., Khlebtsov B.N. et al. Gap-enhanced Raman tags: fabrication, optical properties, and theranostic applications // Theranostics. 2020. V.10. № 5. P. 2067–2094. https://doi.org/10.7150/thno.39968
  42. Li Z.-Y., Xia Y. Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering // Nano. Lett. 2010. V. 10. № 1. P. 243–249. https://doi.org/10.1021/nl903409x
  43. Hu C., Shen J., Yan J. et al. Highly narrow nanogap-containing Au@Au core–shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging // Nanoscale. 2016. V. 8. № 4. P. 2090–2096. https://doi.org/10.1039/C5NR06919J
  44. Mulvaney S.P., Musick M.D., Keating C.D. et al. Glass-coated, analyte-tagged nanoparticles: a new tagging system based on detection with surface-enhanced Raman scattering // Langmuir. 2003. V. 19. № 11. P. 4784–4790. https://doi.org/10.1021/la026706j
  45. Sanles-Sobrido M., Exner W., Rodríguez-Lorenzo L. et al. Design of SERS-encoded, submicron, hollow particles through confined growth of encapsulated metal nanoparticles // J. Am. Chem. Soc. 2009. V. 131. № 7. P. 2699–2705. https://doi.org/10.1021/ja8088444
  46. Hwang D.W., Ko H.Y., Kim S. et al. Development of a quadruple imaging modality by using nanoparticles // Chem. – A Eur. J. 2009. V. 15. № 37. P. 9387–9393. https://doi.org/10.1002/chem.200900344
  47. Khlebtsov B.N., Burov A.M., Zarkov S. V. et al. Surface-enhanced Raman scattering from Au nanorods, nanotriangles, and nanostars with tuned plasmon resonances // Phys. Chem. Chem. Phys. 2023. V. 25. № 45. P. 30903–30913. https://doi.org/10.1039/D3CP04541B
  48. Pazos-Perez N., Guerrini L., Alvarez-Puebla R.A. Plasmon tunability of gold nanostars at the tip apexes // ACS Omega. 2018. V. 3. № 12. P. 17173–18179. https://doi.org/10.1021/acsomega.8b02686
  49. Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions // Nat. Phys. Sci. 1973. V. 241. № 105. P. 20–22. https://doi.org/10.1038/physci241020a0
  50. Khlebtsov B.N., Burov A.M. Synthesis of monodisperse silica particles by controlled regrowth // Colloid Journal. 2023. V. 85. № 3. P. 376–389. https://doi.org/10.31857/S0023291223600293
  51. Лурье Ю.Ю. Справочник по аналитической химии. Москва: Химия. 1989.
  52. Zou X., Ying E., Dong S. Seed-mediated synthesis of branched gold nanoparticles with the assistance of citrate and their surface-enhanced Raman scattering properties // Nanotech. 2006. V. 17. № 18. P. 4758–4764.https://doi.org/10.1088/0957-4484/17/18/038
  53. Hao E., Bailey R.C., Schatz G.C. et al. Synthesis and optical properties of “branched” gold nanocrystals // Nano. Lett. 2004. V. 4. № 2. P. 327–330. https://doi.org/10.1021/nl0351542
  54. Bakr O.M., Wunsch B.H., Stellacci F. High-yield synthesis of multi-branched urchin-like gold nanoparticles // Chem. Mater. 2006. V. 18. № 14. P. 3297–3301. https://doi.org/10.1021/cm060681i
  55. Xie J., Zhang Q., Lee J.Y. et al. The synthesis of SERS-active gold nanoflower tags for in vivo applications // ACS Nano. 2008. V. 2. № 12. P. 2473–2480. https://doi.org/10.1021/nn800442q
  56. Khlebtsov N.G., Zarkov S. V., Khanadeev V.A. et al. A novel concept of two-component dielectric function for gold nanostars: theoretical modelling and experimental verification // Nanoscale. 2020. V. 12. № 38. P. 19963–19981. https://doi.org/10.1039/D0NR02531C
  57. Liu C., Han Y., Wang Z. et al. Preparation of (3-aminopropyl)triethoxysilane-modified silica particles with tunable isoelectric point // Langmuir. 2024. V. 40. № 24. P. 12565–12572. https://doi.org/10.1021/acs.langmuir.4c01027
  58. Айлер Р.К. Коллоидная химия кремнезема и силикатов. Москва: Госстройиздат. 1959.
  59. Сидорова М.П., Кибирова Н.А., Дмитриева И.Б. Адсорбция неионогенных поверхностно-активных веществ на кварце // Коллоидный Журнал. 1979. Т. 41. С. 277–282.
  60. Сидорова М.П., Дмитриева И.Б., Голуб Т.П. Комплексное исследование электроповерхностных свойств кварца в растворах 1: 1 электролитов // Коллоидный Журнал. 1979. Т. 41. С. 488–493.
  61. Nam J.-M., Thaxton C.S., Mirkin C.A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins // Science. 2003. V. 301. № 5641. P. 1884–1886.https://doi.org/10.1126/science.1088755
  62. Shao Y., Li C., Feng Y. et al. Surface-enhanced Raman scattering and density functional theory study of 1,4-benzenedithiol and its silver complexes // Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2013. V. 116. P. 214–219. https://doi.org/10.1016/j.saa.2013.07.037
  63. Liu H., Gao X., Xu C. et al. SERS tags for biomedical detection and bioimaging // Theranostics. 2022. V. 12. № 4. P. 1870–1903. https://doi.org/10.7150/thno.66859
  64. Wojtynek N.E., Mohs A.M. Image‐guided tumor surgery: The emerging role of nanotechnology // WIREs Nanomed. Nanobiotech. 2020. V. 12. № 4. https://doi.org/10.1002/wnan.1624
  65. Lane L.A. Biomedical SERS: spectroscopic detection and imaging in vivo. 2022. P. 451–522. https://doi.org/10.1142/9789811235252_0012
  66. Laing S., Gracie K.,Faulds K. Multiplex in vitro detection using SERS // Chem. Soc. Rev. 2016. V. 45. № 7. P. 1901–1918. https://doi.org/10.1039/C5CS00644A

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Electron microscopic images of gold nanostars obtained by reducing ZXVC on the surface of 15 nm “seeds” with dimethylformamide (a) and ascorbic acid (b). The scale bar is 200 nm. Panel (c) shows the extinction spectra of the synthesized nanoparticles. Spectrum 1 is for the nanostars in panel (a), spectrum 2 is for the nanostars in panel (b).

下载 (359KB)
3. Fig. 2. Scanning electron microscopic image of silicate microparticles (a). Scale bar is 10 μm. The inset shows an enlarged image of individual particles. Scale bar is 1 μm. Histogram of the size distribution of silicate particles (b).

下载 (208KB)
4. Fig. 3. Electron microscopic images of two types of composite SERS labels with large (SiO2/NZB1) and small (SiO2/NZB2) stars on the surface of silicate microspheres (a). Scale bar is 1 μm. Extinction spectra of composite SERS labels (b). Spectrum 1 – for sample (SiO2/NZB1), spectrum 2 – for sample (SiO2/NZB2).

下载 (271KB)
5. Fig. 4. Electron microscopic images of two types of composite SERS labels: with large (SiO2/NZV1) (a, b) and small (SiO2/NZV2) stars (c, d) on the surface of silicate microspheres. Scale bars are 20 μm (a, c) and 1 μm (b, d).

下载 (204KB)
6. Fig. 5. SERS spectra from five single microparticles of SiO2@NZV1 (top), SiO2@NZV2 (middle), and SiO2@NZV1@SiO2 (a). Benzenedithiol was used as a reporter molecule. Microscopic image of single microparticles of SiO2@NZV1 (b). Numbers indicate the particles from which the SERS spectrum was obtained. The summarized data on the relative SERS intensity from single microparticles for two types of nanostars (NZV1 and NZV2) with and without a silicate shell, for three types of aromatic thiols (1,4-benzenedithiol (BDT), nitrobenzenethiol (NBT), and naphthalenethiol (NT)) are shown in panel (c).

下载 (312KB)
7. Fig. 6. SERS mapping of the region with the applied mixture of microparticles encoded by different aromatic thiols. The image is decoded by the intensity of the characteristic line of benzenedithiol at 1563 cm–1 (a), naphthalenethiol at 1385 cm–1 (b), nitrobenzenethiol at 1335 cm–1 (c). Panel (d) shows the optical microscopic image of the scanned region. Panel (e) shows typical SERS spectra of the studied microparticles and intensity variations (mean value and standard deviation) of the Raman lines.

下载 (309KB)
8. Fig. 7. Change in the intensity of Raman scattering from samples with adsorbed NZV1 (a) and NZV2 (b) for microparticles coated (dashed curve) and uncoated (solid curve) with a silicate shell, when irradiated with a laser for 300 seconds. Nitrobenzenethiol was used as a reporter molecule. The intensity of the line corresponding to the vibration of the nitro group was studied.

下载 (195KB)
9. Fig. 8. Change in the relative intensity of Raman scattering from samples with adsorbed NZV1 for microparticles uncoated (a) and coated (b) with a silicate shell during incubation in a medium with pH = 2 (circles), pH = 10 (squares) and in the DMEM cell culture medium (triangles). Nitrobenzenethiol was used as a reporter molecule. The intensity of the line corresponding to the vibration of the nitro group was studied.

下载 (163KB)

版权所有 © Russian Academy of Sciences, 2024