Поиск потенциальных эпитопов в оболочечном белке вируса африканской чумы свиней

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Смоделирована пространственная структура оболочечного белка вируса африканской чумы свиней, рассчитана его топология относительно клеточной мембраны, предсказаны B- и Т-клеточные эпитопы для этого белка, проведена оценка их иммуногенности, аллергенности, токсичности. Изучены вариабельность аминокислот в белке и консервативность найденных эпитопов. Показано, что на основе найденных эпитопов возможна разработка новой пептидной вакцины против африканской чумы свиней.

Об авторах

И. А. Колесников

Национальный исследовательский центр “Курчатовский институт”

Email: a.1wanowskiy@gmail.com
Россия, Москва

В. И. Тимофеев

Национальный исследовательский центр “Курчатовский институт”; Институт кристаллографии им. А.В. Шубникова ФНИЦ “Кристаллография и фотоника РАН”

Email: a.1wanowskiy@gmail.com
Россия, Москва; Россия, Москва

А. В. Ермаков

Национальный исследовательский центр “Курчатовский институт”

Email: a.1wanowskiy@gmail.com
Россия, Москва

А. С. Ивановский

Институт кристаллографии им. А.В. Шубникова ФНИЦ “Кристаллография и фотоника РАН”

Email: a.1wanowskiy@gmail.com
Россия, Москва

Ю. А. Дьякова

Национальный исследовательский центр “Курчатовский институт”

Email: a.1wanowskiy@gmail.com
Россия, Москва

Ю. В. Писаревский

Институт кристаллографии им. А.В. Шубникова ФНИЦ “Кристаллография и фотоника РАН”; Национальный исследовательский центр “Курчатовский институт”

Email: a.1wanowskiy@gmail.com
Россия, Москва; Россия, Москва

М. В. Ковальчук

Национальный исследовательский центр “Курчатовский институт”; Институт кристаллографии им. А.В. Шубникова ФНИЦ “Кристаллография и фотоника РАН”

Автор, ответственный за переписку.
Email: a.1wanowskiy@gmail.com
Россия, Москва; Россия, Москва

Список литературы

  1. Mettenleiter T.C., Sobrino F. // Animal Viruses: Molecular Biology. 2008. V. 14. P. 5. https://doi.org/10.3201/eid1405.080077
  2. Anderson E.C., Hutchings G.H., Mukarati N., Wilkinson P.J. // Veterinary Microbiology. 1998. V. 62 (1). P. 1. https://doi.org/10.1016/S0378-1135(98)00187-4
  3. Khomenko S., Beltrán-Alcrudo D., Rozstalnyy A. et al. // Empress Watch. 2013. V. 28. P. 1
  4. Mazur-Panasiuk N., Woźniakowski G., Niemczuk K. // Sci Rep. 2019. V. 9. № 4556. https://doi.org/10.1038/s41598-018-36823-0
  5. Colson P., De Lamballerie X., Yutin N. et al. // Arch Virol. 2013. V. 158. P. 2517. https://doi.org/10.1007/s00705-013-1768-6
  6. Dixon L.K., Chapman D.A., Netherton C.L., Upton C. // Virus Res. 2013. V. 173 (1). P. 3.
  7. Netherton C.L., Wileman T.E. // Virus Res. 2013. V. 173 (1). P. 76. https://doi.org/10.1016/j.virusres.2012.12.014
  8. Gaudreault N.N., Madden D.W., Wilson W.C. et al. // Front. Vet. Sci. 2020. V. 7. 215. https://doi.org/10.3389/fvets.2020.00215
  9. Rodríguez J.M., Yáñez R.J., Almazán F. et al. // J. Virol. 1993. V. 67. № 9. P. 5312. https://doi.org/10.1128/jvi.67.9.5312-5320.1993
  10. Ruiz-Gonzalvo F., Rodríguez F., Escribano J.M. // Virology. 1996. V. 218 (1). P. 285. https://doi.org/10.1006/viro.1996.0193
  11. Abass O.A., Timofeev V.I., Sarkar B. et al. // J. Biomol. Struct. Dynamics. 2021. V. 40 (16). P. 7283. https://doi.org/10.1080/07391102.2021.1896387
  12. Araf Y., Moin A.T., Timofeev V.I. et al. // Front. Immunol. 2022. V. 13. 863234. https://doi.org/10.3389/fimmu.2022.863234
  13. Q89501. https://nbgi.ru/
  14. Altschul S.F., Gish W., Miller W. et al. // J. Mol. Biol. 1990. V. 215 (3). P. 403.
  15. Jumper J., Evans R., Pritzel A. et al. // Nature. 2021. V. 596. P. 583. https://doi.org/10.1038/s41586-021-03819-2
  16. Jeppe H., Trigos K.D., Pedersen M.D. et al. // bioRxiv. 2022. https://doi.org/10.1101/2022.04.08.487609
  17. Larsen M.V., Lundegaard C., Lamberth K. et al. // BMC Bioinformatics. 2007. V. 8. 424. https://doi.org/10.1186/1471-2105-8-424
  18. http://tools.iedb.org/ellipro/
  19. Ponomarenko J., Bui HH., Li W. et al. // BMC Bioinformatics. 2008. V. 9. 514. https://doi.org/10.1186/1471-2105-9-514
  20. Dimitrov I., Bangov I., Flower D.R. et al. // J. Mol. Model. 2014. V. 20 (5). 2278. https://doi.org/10.1007/s00894-014-2278-5
  21. Gupta S., Kapoor P., Chaudhary K. et al. // PLoS ONE. 2020. V. 8 (9). e73957. https://doi.org/10.1371/journal.pone.0073957
  22. Doytchinova I.A., Flower D.R. // BMC Bioinformatics. 2007. V. 8. 4. https://doi.org/10.1186/1471-2105-8-4
  23. Bui H., Sidney J.H., Li W. et al. // BMC Bioinformatics. 2007. V. 8 (1). 361. https://doi.org/10.1186/1471-2105-8-361
  24. Larsen M.V., Lundegaard C., Lamberth K. et al. // BMC Bioinformatics. 2007. V. 8. 424. https://doi.org/10.1186/1471-2105-8-424
  25. Choo S.Y. // Yonsei Med J. 2007. V. 48 (1). P. 11. https://doi.org/10.3349/ymj.2007.48.1.11
  26. Potocnakova L., Bhide M., Pulzova L.B. // J. Immunol. Res. 2016. https://doi.org/10.1155/2016/6760830

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (259KB)
3.

Скачать (31KB)
4.

Скачать (181KB)
5.

Скачать (190KB)

© Российская академия наук, 2023