Structure of Russian Populations of Yellow Rust Pathogen for Virulence and SSR Markers in 2023

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In recent decades, there has been an increase in the severity of yellow rust of wheat worldwid (caused agent Puccinia striiformis f. sp. tritici). The aim of this work is to characterise the virulence and molecular polymorphism of Russian Pst populations in 2023. Leaves with P. striiformis f. sp. tritici urediniopustules were collected in the North-Western (Leningrad Region), North Caucasus (Dagestan, Krasnodar Territory) and Lower Volga regions (Saratov Region). Fourteen isogenic lines (AvocetNIL) and 15 differentiator varieties served as virulence testers. Twenty markers from Global Rust Research Centre were used in the microsatellite analysis. SCAR markers (SCP19M: 24a1, 24a2, 26a1, 26a2) were involved to search the invasive races PstS1 and PstS2. Virulence analysis included 70 isolates: 34 from Dagestan, 12 from Krasnodar, 6 from Saratov and 18 from Leningrad. The genes Yr5, Yr10, Yr15, Yr24 and Yr26 were characterized by high efficiency. An increase in virulence was noted for the Yr17 gene, which was previously effective in Russia. No significant changes in virulence frequencies were detected for the other Yr genes. Regional Pst populations in 2023, as well as in 2019–2022, were characterized by high phenotypic diversity. Forty-three phenotypes (races) were detected (23 in Dagestan, 3 in Krasnodar, 2 in Saratov and 17 in Leningrad). Two common virulence phenotypes were observed in the Krasnodar and Leningrad Pst collections. According to the Fst index, the Dagestan, Krasnodar, and Leningrad populations were characterized by high similarity; the Saratov population was moderately differentiated from them. Microsatellite analysis was performed for 55 isolates (28 from Dagestan, 18 from Leningrad, 6 from Krasnodar, 3 from Saratov). Polymorphism was noted for 10 out of 20 loci studied, and two alleles were detected in each of them. Significant deviations from the Hardy-Weinberg equilibrium were observed for 11 loci. Genotypic diversity of geographical populations for microsatellite loci was lower than by virulence test. The studied collection was represented by 20 multilocus genotypes (MGs) (Dagestan – 14, Leningrad – 7, Krasnodar – 2, Saratov – 1). Common MGs were found in Dagestan, Krasnodar and Leningrad Pst collections (MG_1); in Dagestan and Leningrad (MG_2); in Dagestan and Saratov (MG_3). Three MGs (4–6) were represented by two or more isolates, the rest by one isolate. As in the virulence analysis, the Dagestan, Krasnodar and Leningrad populations were characterised by high similarity in SSR markers (Fst index); the Saratov population differed moderately from them. According to Mantel’s test, there was a high correlation between virulence and microsatellite results (r = 0.93). Using SCAR markers, as in previous years, single isolates of PstS2 were identified in the Leningrad and Dagestan populations. The conducted complex analysis indicates high variability of yellow rust pathogen populations in Russia, which necessitates annual analyses of their polymorphism in virulence and SSR loci. Donors of highly effective Yr-genes can be recommended for use in breeding for resistance to yellow rust. The lack of differentiation between North Caucasian and Northwestern Pst samples indicates the existence of a single population in these territories.

Texto integral

Acesso é fechado

Sobre autores

E. Gultyaeva

All-Russian Institute for Plant Protection

Autor responsável pela correspondência
Email: eigultyaeva@gmail.com
Rússia, St. Petersburg, 196608

E. Shaydayuk

All-Russian Institute for Plant Protection

Email: eshaydayuk@bk.ru
Rússia, St. Petersburg, 196608

Bibliografia

  1. Ali S., Gautier A., Leconte M. et al. A rapid genotyping method for an obligate fungal pathogen, Puccinia striiformis f. sp. tritici, based on DNA extraction from infected leaf and Multiplex PCR genotyping. BMC Research Notes. 2011. V. 4. P. 240. https://doi.org/10.1186/1756-0500-4-240
  2. Ali S., Khan M.R., Gautier A. et al. Microsatellite genotyping of the wheat yellow rust pathogen Puccinia striiformis. In: Sambasivam Periyannan (ed.). Wheat rust diseases: methods and protocols, methods in molecular biology. V. 1659. N.Y., 2017, pp. 59–70.
  3. Awais M., Ma J., Chen W. et al. Molecular genotyping revealed the gene flow of Puccinia striiformis f. sp. tritici clonal lineage from Uzbekistan of Central Asia to Xinjiang of China. Phytopathol. Res. 2025. https://doi.org/10.1186/s42483-024-00290-5
  4. Bankina B., Jakobija I., Bimšteine G. Peculiarities of wheat leaf disease distribution in Latvia. Acta Biol. Univ. Daugavp. 2011. V. 11 (1). P. 47–54.
  5. Chugunkova T.V., Pastukhova N.L., Topchii T.V. et al. Harmfulness of wheat yellow rust and identification of resistance genes to its highly virulent races. Sci. Innov. 2023. V. 19 (4). P. 66–78. https://doi.org/10.15407/scine19.04.066
  6. Feodorova-Fedotova L., Bankina B. Occurrence of genetic lineages of Puccinia striiformis in Latvia agricultural sciences. Research for rural development. 2020. V. 35. P. 27–32. https://doi.org/10.22616/rrd.26.2020.004
  7. Gassner G., Straib W. Untersuchungen Über die Infektionsbedingungen von Puccinia glumarum und Puccinia graminis. Arb. Biol. Reichsanst. Land-Forst- wirtsch Berlin-Dahlem. 1929. V. 16 (4). P. 609–629.
  8. Gultyaeva E.I., Shaydayuk E.L. Diversity of Northwestern and North Caucasian populations of Puccinia striiformis f. sp. tritici by virulence and microsatellite loci in 2022. Mikologiya i fitopatologiya. 2024. V. 58 (4). P. 327–338. (In Russ.). https://doi.org/10.31857/S0026364824040062
  9. Gultyaeva E.I., Shaydayuk E.L., Kosman E.G. SSR‐based analysis of structural variation of the Russian population of Puccinia striiformis f. sp. tritici in 2019–2021. Plant Pathol. 2024. V. 73 (7). P. 1761–1774. https://doi.org/10.1111/ppa.13919
  10. Gultyaeva Е., Shaydayuk E., Kosman E. Virulence diversity of Puccinia striiformis f. sp. tritici in common wheat in Russian regions in 2019–2021. Agriculture. 2022. V. 12 (11). P. 1957. https://doi.org/10.3390/agriculture12111957
  11. Gultyaeva E.I, Solodukhina O.V. Rusts diseases in cereals. Izuchenie geneticheskikh resursov zernovyh kultur po ustojchivosti k vrednym organizmam. 2008. P. 5–11. (In Russ.).
  12. Hovmøller M.S., Patpour M., Rodriguez-Algaba J. et al. GRRC report of yellow and stem rust races 2022: GRRC, Aarhus University, Denmark. https://agro.au.dk/fileadmin/www.grcc.au.dk/International_Services/Pathotype_YR_results/GRRC_annual_report_2022.pdf. Accessed 14.01.2025
  13. Hovmøller M.S., Patpour M., Rodriguez-Algaba J. et al. Stem- and yellow rust genotyping and race analyses. 2020. GRRC, Aarhus University, Denmark. https://agro.au.dk/fileadmin/www.grcc.au.dk/International_Services/Pathotype_YR_results/Summary_ of_Puccinia_striiformis_molecular_genotyping_2018.pdf. Accessed 14.01.2025
  14. Hovmøller M.S., Rodriguez-Algaba J., Thach T. et al. Race typing of Puccinia striiformis on wheat. In: Sambasivam Periyannan (ed.). Wheat rust diseases: methods and protocols, methods in molecular biology. V. 1659. N.Y., 2017, pp. 29–40.
  15. Hovmøller M.S., Rodriguez-Algaba J., Thach T. et al. Report for Puccinia striiformis race analyses and molecular genotyping 2017. 2018. GRRC, Aarhus University, Denmark. https://agro.au.dk/fileadmin/Summary_of_Puccinia_striiformis_race_analysis_2017.pdf. Accessed 14.01.2025
  16. Hovmøller M.S., Sørensen C.K., Walter S., Justesen A.F. Diversity of Puccinia striiformis on cereals and grasses. Annu. Rev. Phytopathol. 2011. V. 49 (1). P. 197–217. https://doi.org/10.1146/annurev-phyto-072910-095230
  17. Ivanova Yu.N., Rosenfread K.K., Stasyuk A.I. et al. Raise and characterization of a bread wheat hybrid line (Tulaykovskaya 10 × Saratovskaya 29) with chromosome 6Agi2 introgressed from Thinopyrum intermedium. Vavilov J. Genet. Breed. 2021. V. 25 (7). P. 701–712 (in Russ.). https://doi.org/10.18699/VJ21.080
  18. Karimova А.М. Phytopathological assessment of Azerbaijan origin bread wheat (Triticum aestivum L.) genotypes against yellow rust. Agrarnyy nauchnyy zhurnal. 2023. N5. P. 16–23. (In Russ.). https://doi.org/10.28983/asj.y2023i5pp16–23
  19. Keishilov Zh.S., Kokhmetova A.M., Urozaliev R.A. et al. Phytosanitary monitoring of wheat yellow rust (Puccinia striiformis) in Zhаmbyl and Turkestan regions. Izdenister Natigeler. 2023. V. 3 (99). P. 118–128. https://doi.org/10.37884/3-2023/12
  20. Kokhmetova A., Rathan N.D., Sehgal D. et al. QTL mapping for seedling and adult plant resistance to stripe and leaf rust in two winter wheat populations. Front. Genet. 2023. V. 14. P. 1265859. https://doi: 10.3389/fgene.2023.126585
  21. Kokhmetova A., Sharma R., Rsaliyev S. et al. Evaluation of Central Asian wheat germplasm for stripe rust resistance. Plant genetic resources-characterization and utilization. 2018. V. 16. P. 178–184. https://doi: 10.1017/S1479262117000132
  22. Kosman E., Dinoor A., Herrmann A. et al. Virulence Analysis Tool (VAT). User Manual. 2008. https://en-lifesci.tau.ac.il/profile/kosman. Accessed 22.01.2024.
  23. Pavlyushin V.A., Dolzhenko V.I., Shpanev A.M., et al. Integrated protection of winter wheat. Plant protection and quarantine. 2015. N5. P. 38–71. (In Russ.).
  24. Peakall R., Smouse P.E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics. 2012. V. 28. P. 2537–2539. https://doi.org/10.1093/bioinformatics/bts460
  25. Sanin S.S. Agricultural plant disease control – the main factor of the crop production intensification. Novosti zashchity rasteniy. 2010. N1. P. 3–14. (in Russ.).
  26. Schachtel G.A., Dinoor A., Herrmann A. et al. Comprehensive evaluation of virulence and resistance data: a new analysis tool. Plant Dis. 2012. V. 96 (7). P. 1060–1063. https://doi.org/10.1094/PDIS-02-12-0114-SR
  27. Sharma-Poudyal D., Chen X.M., Wan A.M. et al. Virulence characterization of international collections of the wheat stripe rust pathogen, Puccinia striiformis f. sp. tritici. Plant Dis. 2013. V. 97 (3). P. 379–386. https://doi.org/10.1094/pdis-01-12-0078-re
  28. Shaydayuk E.L., Gultyaeva E.I. Characterization of the Northwestern population of Puccinia striiformis f. sp. tritici on the basis of virulence and representation of invasive PstS1 and PstS2 races. Mikologiya i fitopatologiya. 2023. V. 57 (6). P. 435–446. (In Russ.). https://doi.org/10.31857/S0026364823060
  29. Sheshegova T.K., Volkova L.V., Shchekleina L.M. Sources of complex resistance of spring soft wheat from the collection of the N.I. Vavilov All-Russian Research Institute of Plant Industry (VIR). Vestnik Voronezhskogo gosudarstvennogo agrarnogo universiteta. 2023. V. 16 (2). P. 49–58. (In Russ.). https//: doi.org/10.53914/issn2071-2243_2023_2_49–58
  30. Volkova G.V., Kudinova O.A., Matveeva I.P. Virulence and diversity of Puccinia striiformis in South Russia. Phytopathol. Mediterr. 2021. V. 60 (1). P. 119–127. https://doi.org/10.36253/phyto-12396
  31. Walter S., Ali S., Kemen E. et al. Molecular markers for tracking the origin and worldwide distribution of invasive strains of Puccinia striiformis. Ecol. Evol. 2016. V. 6 (9). P. 2790–2804. https://doi.org/10.1002/ece3.2069
  32. Zeleneva Y.V., Sudnikova V.P., Buchneva G.N. Immunological characteristics of soft winter wheat varieties in conditions of the CBR. Trudy Kubanskogo Gosudarstvennogo Agrarnogo Universiteta. 2022. N96. P. 95–99. (In Russ.). https://doi.org/10.21515/1999-1703-96-95-99
  33. Zhukovsky A.G., Buga S.F., Krupenko N.A. et al. Phytopathological situation in grain crops on the territory of the Republic of Belarus. Сrop Farming and Plant Growing. 2017. N2. P. 9–12. (In Russ.).
  34. Гультяева Е.И., Солодухина О.В. (Gultyaeva, Solodukhina) Ржавчинные болезни зерновых культур // Изучение генетических ресурсов зерновых культур по устойчивости к вредным организмам. 2008. С. 5–11.
  35. Гультяева Е.И., Шайдаюк Е.Л. (Gultyaeva, Shaydayuk) Характеристика северо-западной и северокавказской популяций Puccinia striiformis f. sp. tritici по вирулентности и микросателлитным локусам в 2022 году // Микология и фитопатология. 2024. Т. 58. № 4. C. 327–338.
  36. Жуковский А.Г., Буга С.Ф., Крупенько Н.А., и др. (Zhu-kovsky et al.) Фитопатологическая ситуация в посевах зерновых культур на территории Республики Беларусь // Земледелие и растениеводство. 2017. № 2. С. 9–12.
  37. Зеленева Ю.В., Судникова В.П., Бучнева Г.Н. (Zeleneva et al.) Иммунологическая характеристика сортов озимой мягкой пшеницы в условиях ЦЧР // Тр. Кубанского гос. аграрного ун-та. 2022. № 96. С. 95–99. https://doi.org/10.21515/1999-1703-96-95-99
  38. Иванова Ю.Н., Розенфрид К.К., Стасюк А.И. и др. (Ivanova et al.) Получение и характеристика линии мягкой пшеницы (Тулайковская 10 × Саратовская 29) с интрогрессией хромосомы пырея Thinopyrum intermedium 6Agi2 // Вавиловский журн. генет. и сел. 2021. Т. 25. № 7. C. 701–712. https://doi.org/10.18699/VJ21.080
  39. Каримова А.М. Фитопатологическая оценка влияния желтой ржавчины на генотипы мягкой пшеницы (Triticum aestivum L.) азербайджанского происхождения // Аграрный научный журнал. 2023. № 5. С. 16–23.
  40. Кеишилов Ж., Кохметова А., Урозалиев Р. и др. (Keishilov et al.) Фитосанитарный мониторинг желтой ржавчины пшеницы (Puccinia striiformis) в Жамбылской и Туркестанской областях // Исследования, результаты. 2023. Т. 3. № 99. С. 118–128.
  41. Павлюшин В.А., Долженко В.И., Шпанев А.М. и др. (Pavlyushin et al.) Интегрированная защита озимой пшеницы // Защита и карантин растений. 2015. № 5. С. 38–71.
  42. Санин C.C. (Sanin) Контроль болезней сельскохозяйственных растений – важнейший фактор интенсификации растениеводства // Вестник защиты растений. 2010. № 1. С. 3–14.
  43. Шайдаюк Е.Л., Гультяева Е.И. (Shaydayuk, Gultyaeva) Характеристика северо-западной популяции Puccinia striiformis f. sp. tritici по признаку вирулентности и представленности инвазивных рас PstS1 и PstS2 // Микология и фитопатология. 2023. Т. 57. № 6. С. 435–446.
  44. Шешегова Т.К., Волкова Л.В., Щеклеина Л.М. (Sheshegova et al.) Источники комплексной устойчивости яровой мягкой пшеницы из коллекции ВИР // Вестн. Воронеж. гос. агр. ун-та. 2023. Т. 16. № 2 (77). С. 49–58.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Genetic distances between the virulence phenotypes of Puccinia striiformis in 2023 (Genetic distance, GenAlex): D – Dagestan; K – Krasnodar Krai; L – Leningrad Region, S – Saratov Region. Phenotypes observed in several populations are highlighted in bold.

Baixar (10KB)
3. Fig. 2. Genetic distances between SSR genotypes of Puccinia striiformis in 2023 (Genetic distance, GenAlex). MG – molecular genotype: D – Dagestan; K – Krasnodar; L – Leningrad region; S – Saratov region. Common MGs are highlighted in bold.

Baixar (11KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025