Resonance related magnetoelastic mods in the structure of ferromagnet-dielectric

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Magnetoelastic interactions in the region of ferromagnetic resonance (FMR) in a thin ferrite film on a relatively thick dielectric elastic substrate excited by a magnetic film with a variable magnetic field are investigated. Dependencies of the period of elastically coupled resonance lines on the amplitude-frequency spectrum of FMR are constructed as functions of elastic damping parameters, magnetoelastic coupling, modulus of elasticity, and material density in linear and nonlinear regimes. The presence of a strong threshold nonlinear dependence of the resonance line amplitude on the elastic damping parameter is revealed.

Texto integral

Acesso é fechado

Sobre autores

V. Shaporov

Syktyvkar State University named after P. Sorokin

Autor responsável pela correspondência
Email: shaporov@mail.ru
Rússia, Oktyabrsky Prospekt, 55, Syktyvkar, 167001

V. Shavrov

Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Email: shaporov@mail.ru
Rússia, Mokhovaya str. 11, build. 7, Moscow, 125009

V. Shcheglov

Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Email: shaporov@mail.ru
Rússia, Mokhovaya str. 11, build. 7, Moscow, 125009

Bibliografia

  1. Штраусс В. // Физическая акустика. Т. 4Б. Применения физической акустики в квантовой физике и физике твердого тела / Под ред. У. П. Мэзона. М.: Мир, 1970. С. 247.
  2. Адам Дж.Д. // ТИИЭР. 1988. Т. 76. № 2. С. 73.
  3. Исхак В.С. // ТИИЭР. 1988. Т. 76. № 2. С. 86.
  4. Adam J.D., Davis L.E., Dionne G. F. et al. // IEEE Trans. 2002. V. MTT-50. № 3. P. 721.
  5. Шавров В.Г., Щеглов В.И. Магнитостатические волны в неоднородных полях. М.: Физматлит, 2016.
  6. Курушин Е.П., Нефедов Е.И. // Микроэлектроника. 1977. Т. 6. № 6. С. 549.
  7. Serga A.A., Chumak A.V., Hillebrands B. // J. Phys. D: Appl. Phys. 2010. V. 43. P. 264002(16).
  8. Ле-Кроу Р., Комсток Р. // Физическая акустика. Т. 3Б. Динамика решетки / Под ред. У. П. Мэзона. М.: Мир, 1968. С. 156.
  9. Калашникова А.М., Кимель А.В., Писарев Р.В. // Успехи физ. наук. 2015. T. 185. № 10. С. 1064.
  10. Chang C.L., Tamming R.R., Broomhall T.J. et al. // Phys. Rev. Appl. 2018. V.10. № 3. P. 034068(8).
  11. Власов В.С., Голов А.В., Котов Л.Н. и др. // Акустич. журн. 2022. Т. 68. № 1. С. 22.
  12. An K., Litvinenko A.N., Kohno R. et al. // Phys. Rev. B. 2020. V. 101. № 6. P. 060407(6).
  13. Полулях С.Н., Бержанский В.Н., Семук Е.Ю. и др. // ЖТФ. 2021. Т. 91. № 7. С. 1124.
  14. Полулях С.Н., Бержанский В.Н., Семук Е.Ю. и др. // ЖЭТФ. 2021. Т. 159. № 2. С. 307.
  15. Гуляев Ю.В., Зильберман П.Е., Казаков Г.Т. // Письма в ЖЭТФ. 1981. Т. 39. № 9. С. 500.
  16. Казаков Г.Т., Тихонов В.В., Зильберман П.Е. // ФТТ. 1983. Т. 25. № 8. С. 2307.
  17. Андреев А.С., Зильберман П.Е., Кравченко В.Б. и др. // Письма в ЖТФ. 1984. Т. 10. № 2. С. 90.
  18. Хивинцев Ю.В., Сахаров В.К., Высоцкий С.Л. и др. // ЖТФ. 2018. Т. 88. № 7. С. 1060.
  19. Ветошко П.М., Власов В.С., Шавров В.Г., Щеглов В.И. // РЭ. 2023. Т. 68. № 2. С. 157.
  20. Кузмичев А.Н., Ветошко П.М., Князев Г.А. и др. // Письма в ЖЭТФ. 2020. Т. 112. № 11. С. 749.
  21. Knyazev G.A., Kuzmichev A.N., Petrov P.E. et al. // arXiv:2301.10725v1 [cond-mat.mes-hall]. 24 Jan 2023.
  22. Власов В.С., Котов Л.Н., Шавров В.Г., Щеглов В.И. // РЭ. 2009. Т. 54. № 7. С. 863.
  23. Litvinenko A., Khymyn R., Tyberkevych V. et al. // Phys. Rev. Appl. 2021. V. 15. № 3. P. 034057.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Geometry of the problem. The two-layer structure consists of a ferrite film (upper layer) and a non-magnetic substrate (lower layer); the inset shows a diagram of a cubic crystallographic cell.

Baixar (69KB)
3. Fig. 2. Resonance curves by frequency at low h0 = 0.01 Oe (a, c) and high h0 = 0.5 Oe (b, d) excitation levels and different values ​​of the magnetoelastic interaction constant: B2 = 0 (a, b); B2 = 6.96×106 erg cm–3 (c, d).

Baixar (108KB)
4. Fig. 3. Dependence of the distance between adjacent resonance lines: on the structure thickness d (a), on the substrate density ρ (b), on the magnetoelasticity constant c44 (c); solid line – values ​​calculated using formula (19), dots – measured frequency distances between two adjacent resonance lines.

Baixar (90KB)
5. Fig. 4. The shape of the resonance line corresponding to one elastic resonance to the left of the maximum of the frequency response of the magnetoelastic FMR in the linear mode at h0 = 0.01 Oe, calculated with a step of 100 (a), 30 (b) and 3 kHz (c).

Baixar (77KB)
6. Fig. 5. The shape of the resonance line corresponding to one elastic resonance to the right of the maximum of the frequency response of magnetoelastic FMR in the linear mode at h0 = 0.01 Oe (a, c) and nonlinear at h0 = 0.5 Oe (b, d), near the maximum (a, b) and far from the maximum (c, d).

Baixar (98KB)
7. Fig. 6. Frequency response shapes of an elastically coupled resonance line to the right of the FMR maximum at β = 0 (1), 0.027 (2), 0.039 (3), 0.055 (4), 0.077 (5), 0.108 (6) and 0.3 μs–1 (7); insets show the dependence of the maximum (solid line) and minimum (dashed line) values ​​of the amplitude mx,y on β in the linear mode (h0 = 0.01 Oe) (a, b) and nonlinear mode (h0 = 0.5 Oe) (c, d).

Baixar (224KB)
8. Fig. 7. Amplitude-frequency characteristic of magnetoelastic resonance at B2 = 13.9×106 erg cm–3 in the linear mode (h0 = 0.01 Oe) (a) and nonlinear mode (h0 = 0.5 Oe) (b).

Baixar (87KB)
9. Fig. 8. General view of the resonance line (a, b) and the shape of the resonance line to the left of the FMR maximum near its center (c, d) in the linear mode at h0 = 0.01 Oe (a, c) and nonlinear at h0 = 0.5 Oe (b, d) for different values ​​of the magnetoelastic coupling parameter: (1), 6.96 × 106 (2), 13.9 × 106 (3), 27.84 × 106 (4), 55.68 × 106 (5), 111.36 × 106 erg cm–3 (6).

Baixar (178KB)
10. Fig. 9. Frequency response for right (curve 1), left (2) and linear polarizations (3): (a) — linear mode for h0 = 0.01 Oe, (b) — nonlinear mode for h0 = 0.5 Oe.

Baixar (74KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024