Synthesis and analysis of ultra-wideband reflectarrays
- Authors: Bankov S.E.1, Duplenkova M.D.1
-
Affiliations:
- Kotelnikov Institute of Radioengineering and Electronics RAS
- Issue: Vol 70, No 2 (2025)
- Pages: 103-116
- Section: ЭЛЕКТРОДИНАМИКА И РАСПРОСТРАНЕНИЕ РАДИОВОЛН
- URL: https://medjrf.com/0033-8494/article/view/685040
- DOI: https://doi.org/10.31857/S0033849425020014
- EDN: https://elibrary.ru/GMYMVR
- ID: 685040
Cite item
Abstract
The article is devoted to the problems of analysis and synthesis of dual-polarization ultra-wideband reflectarrays and is relevant for arrays of UWB elements of extended length such as Vivaldi antennas and TEM-horns. Synthesis and analysis are carried out in the approximation of a locally periodic array, when each of its elements can be assigned a Floquet cell. A review of the literature on UWB reflectarrays is carried out and it is shown that in most published works the dependence of the phase of the Floquet cell transmission coefficient on the angle of incidence and polarization of the exciting wave is not taken into account in the process of synthesis of the array. This article presents a procedure for the approximate synthesis of a dual-polarization UWB reflectarray taking into account the above effects. An approach to the analysis of the UWB RAA is proposed, based on the numerical calculation of the Floquet cell scattering matrix in combination with the successive approximations method. A comparison of the solutions at the first and second iterations is carried out, and the questions of further solution correction by increasing the order of approximation are discussed.
Full Text

About the authors
S. E. Bankov
Kotelnikov Institute of Radioengineering and Electronics RAS
Author for correspondence.
Email: sbankov@yandex.ru
Russian Federation, Mokhovaya Str., 11, build. 7, Moscow, 125009
M. D. Duplenkova
Kotelnikov Institute of Radioengineering and Electronics RAS
Email: sbankov@yandex.ru
Russian Federation, Mokhovaya Str., 11, build. 7, Moscow, 125009
References
- Dahri M.H., Jamadulin M.H., Abbasi M.I., Kamarudim M.R. // IEEE Access. 2017. V. 5. Article No. 17803.
- Narayanasamy K., Mohammed G.N.A., Savarimuthu K. et al. // Int. J. RF and Microwave Computer‐Aided Engineering. 2020. Article No. 22272.
- Joy J.A., Palaniswami S.K., Kumar S. et al. // IEEE Access. 2024. V. 12. Article No. 46717.
- Банков С.Е., Курушин А.А., Гутцайт Э.М. Решение оптических и СВЧ задач с помощью HFSS. М.: Оркада, 2012. 240 с.
- Li W., Gao S., Zhang L. et al. // IEEE Trans. 2018. V-AP. 66. № . 2. P. 533.
- Zhang J. Zhang L., Li W. et al. // 2020 14th European Conference on Antennas and Propagation (EuCAP). Copenhagen. 15–20 Mar. N.Y.: IEEE, 2020. Paper No. 9135484.
- Hamza M., Zekios C.L., Georgakopoulos S.V. // 2021 IEEE Int. Symp. on A&P and USNC-URSI Radio Science Meeting (APS/URSI). Singapore. 04–10 Dec. N.Y.: IEEE, 2021. P. 977.
- Wang J., Zhou Y., Feng X. // 2019 Computing, Communications and IoT Applications (ComComAp). Shenzhen. 28–30 Oct. N.Y.: IEEE, 2019. P. 200.
- Xiao L., Qu S.W., Yang S. // Int. J. RF and Microwave Computer‐Aided Engineering. 2021. Article No. 22892.
- Qin F., Li L., Liu Y., Zhang H. // The Applied Computational Electromagnetics Society J. (ACES). 2020. V. 35. № 7. P. 784.
- Ren J. Wang H., Shi W., Ma M. // IEEE Antennas and Wireless Propagation Lett. 2021. V. 20. № . 12. P. 2496.
- Амитей Н., Галиндо В., Ву Ч. Теория и анализ фазированных антенных решеток. М.: Мир. 1974.
- Калошин В.А., Ле Н.Т. // Докл. VI Всерос. Микроволновой конф. Москва 28–30 Нояб. 2018. М.: ИРЭ им. В. А. Котельникова РАН, 2018. C. 194.
- Yan J.B., Gogineni S., Camps-Raga B., Brozena J. // IEEE Trans. 2015. V. AP-64. № 2. P. 781.
- Марков Г.Т., Чаплин А.Ф. Возбуждение электромагнитных волн. М.: Радио и связь, 1983.
Supplementary files
