Interlayer junction for EBG waveguide integrated with a power divider into two channels
- 作者: Bankov S.E.1, Kalinichev V.I.1
-
隶属关系:
- Institute of Radio Engineering and Electronics named after V.A. Kotelnikov RAS
- 期: 卷 69, 编号 5 (2024)
- 页面: 414-421
- 栏目: ЭЛЕКТРОДИНАМИКА И РАСПРОСТРАНЕНИЕ РАДИОВОЛН
- URL: https://medjrf.com/0033-8494/article/view/650671
- DOI: https://doi.org/10.31857/S0033849424050023
- EDN: https://elibrary.ru/ILNKXQ
- ID: 650671
如何引用文章
详细
An interlayer junction for three-row EBG waveguides integrated with a two-channel power divider was studied. It is shown that without additional matching such transitions are relatively narrow-band in terms of reflection coefficient in the frequency band 8…12 GHz. To expand the matching band, a modified transition with additional matching rods in both waveguide channels on the power divider layer is proposed. Using numerical analysis, it was found that due to this in the frequency band under study, it is possible to obtain a symmetrical matching curve with two well separated minima and with a matching level no worse than –20 dB in the central part of the range. It is shown that in the structure with matching rods, the operating frequency band by reflection coefficient is significantly expanded in comparison with the original structure.
全文:

作者简介
S. Bankov
Institute of Radio Engineering and Electronics named after V.A. Kotelnikov RAS
编辑信件的主要联系方式.
Email: sbankov@yandex.ru
俄罗斯联邦, St. Mokhovaya, 11, building 7, Moscow, 125009
V. Kalinichev
Institute of Radio Engineering and Electronics named after V.A. Kotelnikov RAS
Email: sbankov@yandex.ru
俄罗斯联邦, St. Mokhovaya, 11, building 7, Moscow, 125009
参考
- Гвоздев В.И., Нефедов Е.И. Объемные интегральные схемы СВЧ. М.: Наука, 1987.
- Банков С.Е. Электромагнитные кристаллы. М.: Физматлит, 2010.
- Bankov S.E. // PIERS Proc. Moscow (Russia), August 18–21. 2009. P. 1680.
- Банков С.Е., Дупленкова М.Д. // Журн. радиоэлектроники. 2009. № 4. http://jre.cplire.ru/jre/apr09/4/text.html
- Банков С.Е., Калошин В.А., Фролова Е.В. // Журн. радиоэлектроники. 2009. № 3. http://jre.cplire.ru/jre/mar09/1/text.html
- Банков С.Е., Пангонис Л.И., Фролова Е.В. // РЭ. 2010. Т. 55. № 11. С. 1285.
- Банков С.Е., Калиничев В.И., Фролова Е.В. // РЭ. 2020. Т. 65. № 9. С. 1.
- Ommodt K., Sanzgiri S., German F., Jones T. // Dig. IEEE Antennas and Propagation Soc. Int. Symp. . Baltimore. 21–26 Jul. 1996. N.Y.: IEEE, 1996. V. 2. P. 1334. https://ieeexplore.ieee.org/document/549843
- Abdel-Wahab W.M., Al-Saedi H., Palizban A. // Proc. IEEE Int. Symp. on Antennas and Propagation and USNC-URSI Radio Sci. Meeting. Atlanta. 7–12 Jul. 2019. N.Y.: IEEE, 2019. P. 961. https://ieeexplore.ieee.org/document/8889060
- Yang T.-H., Chen C.-F., Huang T.-Y. // Proc. Asia-Pacific Microwave Conf. Suzhou, 4–7 Dec. 2005. N.Y.: IEEE, 2005. Article No. 1606978 https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1606978
- Vahabisani N., Daneshmand M. // Proc. 42nd Europ. Microwave Conf. Amsterdam. 29 Oct. — 1 Nov. 2012. N.Y.: IEEE, 2012. Article No. 6459138. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6459138
- Myers J.C., Hejase J.A., Tang J. et al. // IEEE27th Conf. Electrical Performance of Electronic Packaging and Systems (EPEPS). San Jose. 14–17 Oct. 2018. N.Y.: IEEE, 2018. P. 123. https://ieeexplore.ieee.org/document/8534285
- Huang Y., Wu K.-L., Ehlert M. // IEEE Microwave Opt. Technol. Lett. 2003. V. 13. № 8. P. 338.
- Калиничев В.И., Банков С.Е. // РЭ. 2022. Т. 67. № 7. С. 628.
- Сазонов Д.М. Антенны и устройства СВЧ. М.: Высш. школа, 1988.
补充文件
