Significance of Biologically Active Compounds in Plants for Increasing Their Self-Resistance to Unfavorable Abiotic Impacts
- Authors: Vasfilova E.S.1
-
Affiliations:
- Russian Academy of Scienses, Ural Branch, Institute Botanic Garden
- Issue: Vol 60, No 3 (2024)
- Pages: 3-20
- Section: REVIEWS
- URL: https://medjrf.com/0033-9946/article/view/674398
- DOI: https://doi.org/10.31857/S0033994624030013
- EDN: https://elibrary.ru/PUGUUO
- ID: 674398
Cite item
Abstract
Various abiotic stresses universally affect metabolic processes in plants, significantly limiting their growth and reducing productivity. They can be caused by various factors: extreme temperatures, drought, salinity, UV radiation, heavy metals. Plants, as organisms deprived of mobility, have developed complex and well-organized regulatory mechanisms of adaptation and resistance to abiotic stress conditions, complex alternative defense strategies. They can vary for different plant species, depend on the nature and severity of stress and include the use of the various biologically active compounds as tools to overcome stress conditions and increase plant resistance to adverse environmental influences. These include compounds of both primary metabolism (oligo- and polysaccharides and their derivatives, polyols, amino acids) and secondary metabolism (terpenoids, phenolic compounds – flavonoids, phenolic acids, etc.). These compounds are active antioxidants and provide protection against oxidative damage resulting from various abiotic stresses. They are able to remove and inhibit the formation of reactive oxygen species (ROS), activate antioxidant enzymes, reduce the activity of oxidative enzymes, which leads to a decrease in peroxidation of cell membranes; protect cell structures and important biological macromolecules (proteins, lipids, nucleic acids), which are of great physiological importance for maintaining normal plant life. These compounds are characterized by an active role in providing osmotic adaptation, some of them can effectively replace water molecules, stabilizing the cellular structure through hydrophilic interactions and hydrogen bonds and providing plant resistance to salinity and water deficiency. These biologically active compounds also function as primary signaling molecules and regulate signals that control the expression of many genes and enzymes involved in metabolic processes and associated with stress resistance. Some, such as flavonoids, counteract the negative effects of UV radiation by acting as internal light filters to protect chloroplasts and other organelles from damage. Flavonoids also show the ability to provide protection against stress caused by the accumulation of heavy metals by chelating them and reducing their toxicity. In general, various groups of bioactive compounds are important for combating the weakening and cessation of plant physiological activity, including all key processes such as photosynthesis, biosynthesis of photosynthetic pigments, electron transport, protein synthesis, lipid metabolism, water metabolism and others. Under various environmental stresses, they play an important role in adaptation, ensuring the survival, stability and competitiveness of plants in response to environmental impacts over the life course.
Full Text

About the authors
E. S. Vasfilova
Russian Academy of Scienses, Ural Branch, Institute Botanic Garden
Author for correspondence.
Email: euvas@mail.ru
Russian Federation, Ekaterinburg
References
- Sharma A., Shahzad B., Rehman A., Bhardwaj R., Landi M., Zheng B. 2019. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. — Molecules. 24(13): 2452. https://doi.org/10.3390/molecules24132452
- Kumar S., Abedin M. M., Singh A. K., Das S. 2020. Role of phenolic compounds in plant-defensive mechanisms. — In: Plant Phenolics in Sustainable Agriculture. Vol. 1. Springer, Singapore. P. 517–532. https://doi.org/10.1007/978-981-15-4890-1_22
- Van den Ende W., El-Esawe S. K. 2014. Sucrose signaling pathways leading to fructan and anthocyanin accumulation: A dual function in abiotic and biotic stress responses? — Environ. Exp. Bot. 108: 4–13. https://doi.org/10.1016/j.envexpbot.2013.09.017
- Piasecka A., Kachlicki P., Stobiecki M. 2019. Analytical methods for detection of plant metabolomes changes in response to biotic and abiotic stresses. — Int. J. Mol. Sci. 20(2): 379. https://doi.org/10.3390/ijms20020379
- Paliwal A., Verma A., Tiwari H., Singh M. K., Gour J. K., Nigam A. K., Kumar R., Sinha V. B. 2021. Effect and importance of compatible solutes in plant growth promotion under different stress conditions. — In: Compatible Solutes Engineering for Crop Plants Facing Climate Change. Springer, Cham. P. 223–239. https://doi.org/10.1007/978-3-030-80674-3_10
- Ashraf M. 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. — Biotechnol. Adv. 27(1): 84–93. https://doi.org/10.1016/j.biotechadv.2008.09.003
- Sharma P., Jha A. B., Dubey R. S., Pessarakli M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. — J. Bot. 2012: 217037. https://doi.org/10.1155/2012/217037
- Gill S. S., Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. — Plant Physiol. Bioch. 48(12): 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016
- Borges C. V., Minatel I. O., Gomez-Gomez H. A., Lima G. P. P. 2017. Medicinal plants: Influence of environmental factors on the content of secondary metabolites. — In: Medicinal Plants and Environmental Challenges. Springer, Cham. P. 259–277. https://doi.org/10.1007/978-3-319-68717-9_15
- Sharma V., Garg N. 2022. Organic solutes in cereals under abiotic stress. — In: Sustainable Remedies for Abiotic Stress in Cereals. Springer, Singapore. P. 29–50. https://doi.org/10.1007/978-981-19-5121-3_2
- AbdElgawad H., Peshev D., Zinta G., Van den Ende W., Janssens I. A., Asard H. 2014. Climate extreme effects on the chemical composition of temperate grassland species under ambient and elevated CO2: A comparison of fructan and non-fructan accumulators. — PLOS ONE. 9(3): e92044. https://doi.org/10.1371/journal.pone.0092044
- Toscano S., Trivellini A., Cocetta G., Bulgari R., Francini A., Romano D., Ferrante A. 2019. Effect of preharvest abiotic stresses on the accumulation of bioactive compounds in horticultural produce. — Front. Plant Sci. 10: 01212. https://doi.org/10.3389/fpls.2019.01212
- Valluru R., Van den Ende W. 2008. Plant fructans in stress environments: emerging concepts and future prospects. — J. Exp. Bot. 59(11): 2905–2916. https://doi.org/10.1093/jxb/ern164
- Dawid C., Hille K. 2018. Functional metabolomics – a useful tool to characterize stress-induced metabolome alterations opening new avenues towards tailoring food crop quality. —Agronomy. 8(8): 138. https://doi.org/10.3390/agronomy8080138
- Arbona V., Manzi M., de Ollas C. Gómez-Cadenas A. 2013. Metabolomics as a tool to investigate abiotic stress tolerance in plants. — Int. J. Mol. Sci. 14(3): 4885–4911. https://doi.org/10.3390/ijms14034885
- Shah A., Smith D. L. 2020. Flavonoids in agriculture: chemistry and roles in, biotic and abiotic stress responses, and microbial associations. — Agronomy. 10(8): 1209. https://doi.org/10.3390/agronomy10081209
- Larson R. A. 1988. The antioxidants of higher plants. — Phytochemistry. 27(4): 969–978. https://doi.org/10.1016/0031-9422(88)80254-1
- Chen T. H. H., Murata N. 2011. Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. — Plant Cell Environ. 34(1): 1–20. https://doi.org/10.1111/j.1365-3040.2010.02232.x
- Farooqi M. Q. U., Zahra Z., Afzal M., Ghani M. I. 2021. Recent advances in plant adaptation to climate change – an introduction to compatible solutes. — In: Compatible Solutes Engineering for Crop Plants Facing Climate Change. Springer, Cham. P. 1–9. https://doi.org/10.1007/978-3-030-80674-3_1
- Ganie S. A. 2021. Amino acids other than proline and their participation in abiotic stress tolerance. — In: Compatible Solutes Engineering for Crop Plants Facing Climate Change. Springer, Cham. P. 47–96. https://doi.org/10.1007/978-3-030-80674-3_3
- Verslues P. E., Sharma S. 2010. Proline metabolism and its implications for plant-environment interaction. — The Arabidopsis Book. 8: 1–23. https://doi.org/10.1199/tab.0140
- Vijayakumar A., Beena R. 2023. Alterations in carbohydrate metabolism and modulation of thermo-tolerance in tomato under heat stress. — Int. J. Environ. Clim. Chang. 13(9): 2798–2818. https://doi.org/10.9734/ijecc/2023/v13i92514
- Pereira S., Lins R. D., Chandrasekhar I., Freitas L. C. G., Hünenberger P. H. 2004. Interaction of the disaccharide trehalose with a phospholipid bilayer: a molecular dynamics study. — Biophys. J. 86(4): 2273–2285. https://doi.org/10.1016/S0006-3495(04)74285-X
- Siwko M. E., Marrink S. J., de Vries A. H., Kozubek A., Schoot Uiterkamp A. J. M., Mark A. E. 2007. Does isoprene protect plant membranes from thermal shock? A molecular dynamics study. — Biochim. Biophys. Acta. 1768(2): 198–206. https://doi.org/10.1016/j.bbamem.2006.09.023
- Sum A. K., Faller R., de Pablo J. J. 2003. Molecular simulation study of phospholipid bilayers and insights of the interactions with disaccharides. — Biophys. J. 85(5): 2830–2844. https://doi.org/10.1016/S0006-3495(03)74706-7
- Miller G., Suzuki N., Ciftci-Yilmaz S., Mittler R. 2010. Reactive oxygen species homeostasis and signaling during drought and salinity stresses. — Plant Cell Environ. 33(4): 453–467. https://doi.org/10.1111/j.1365-3040.2009.02041.x
- Janská A., Maršík P., Zelenková S., Ovesná J. 2010. Cold stress and acclimation – what is important for metabolic adjustment? — Plant Biology. 12(3): 395–405. https://doi.org/10.1111/j.1438-8677.2009.00299.x
- Pamuru R. R., Puli C. O. R., Pandita D., Wani S. H. 2021. Sugar alcohols and osmotic stress adaptation in plants. — In: Compatible Solutes Engineering for Crop Plants Facing Climate Change. Springer, Cham. P. 189–204. https://doi.org/10.1007/978-3-030-80674-3_8
- Márquez-López R. E., Uc-Chuc M. A., Loyola-Vargas V. M., Santiago-García P. A., López M. G. 2023. Fructosyltransferases in plants: Structure, function and application: A review. — Carbohydr. Polym. Technol. Appl. 6: 100343. https://doi.org/10.1016/j.carpta.2023.100343
- Pommerrenig B., Ludewig F., Cvetkovic J., Trentmann O., Klemens P. A. W., Neuhaus H. E. 2018. In concert: orchestrated changes in carbohydrate homeostasis are critical for plant abiotic stress tolerance. — Plant Cell Physiol. 59(7): 1290–1299. https://doi.org/10.1093/pcp/pcy037
- Hincha D. K., Livingston III D. P., Premakumar R., Zuther E., Obel N., Cacela C., Heyer A. G. 2007. Fructans from oat and rye: Composition and effects on membrane stability during drying. — Biochim. Biophys. Acta. 1768(6): 1611–1619. https://doi.org/10.1016/j.bbamem.2007.03.011
- Ali Q., Athar H., Haider M., Shahid S., Aslam N., Shehzad F., Naseem J., Ashraf R., Ali A., Hussain S. 2019. Role of amino acids in improving abiotic stress tolerance to plants. — In: Plant tolerance to environmental stress. Boca Raton. P. 175–204. https://doi.org/10.1201/9780203705315-12
- Khan N., Ali S., Zandi P., Mehmood A., Ullah S., Ikram M., Ismail S. M. A., Babar M. A. 2020. Role of sugars, amino acids and organic acids in improving plant abiotic stress tolerance. —Pak. J. Bot. 52(2): 355–363. https://doi.org/10.30848/PJB2020-2(24)
- Kavi Kishor P. B., Suravajhala P., Rathnagiri P. 2022. SreenivasuluN. Intriguing role of proline in redox potential conferring high temperature stress tolerance. — Front. Plant Sci. 13: 867531. https://doi.org/10.3389/fpls.2022.867531
- Szabados L., Savouré A. 2010. Proline: a multifunctional amino acid. — Trends Plant Sci. 15(2): 89–97. https://doi.org/10.1016/j.tplants.2009.11.009
- Hayat S., Hayat Q., Alyemeni M. N., Wani A. S., Pichtel J., Ahmad A. 2012. Role of proline under changing environments. A review. — Plant Signal. Behav. 7(11): 1456–1466. https://doi.org/10.4161/psb.21949
- Ashraf M., Foolad M.R. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. — Environ. Exp. Bot. 59(2): 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006
- Yang X., Lu M., Wang Y., Wang Y., Liu Z., Chen S. 2021. Response mechanism of plants to drought stress. — Horticulturae. 7(3): 50. https://doi.org/10.3390/horticulturae7030050
- Kurepin L. V., Ivanov A. G., Zaman M., Pharis R. P., Hurry V., Hüner N. P. A. 2017. Interaction of glycine betaine and plant hormones: protection of the photosynthetic apparatus during abiotic stress. — In: Photosynthesis: Structures, Mechanisms, and Applications. Springer, Cham. P. 185–202. https://doi.org/10.1007/978-3-319-48873-8_9
- Al-Huqail A., El-Dakak R. M., Sanad M. N., Badr R. H., Ibrahim M. M., Soliman D., Khan F. 2020. Effects of climate temperature and water stress on plant growth and accumulation of antioxidant compounds in sweet basil (Ocimum basilicum L.) leafy vegetable. — Scientifica. 2020: 3808909. https://doi.org/10.1155/2020/3808909
- Sakamoto A., Murata N. 2002.The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. — Plant Cell Environ. 25(2): 163–171. https://doi.org/10.1046/j.0016-8025.2001.00790.x
- Srivastava V., Mishra S., Chowdhary A. A., Lhamo S., Mehrotra S. 2021. The γ-aminobutyric acid (GABA) towards abiotic stress tolerance. — In: Compatible Solutes Engineering for Crop Plants Facing Climate Change. Springer, Cham. P. 171–188. https://doi.org/10.1007/978-3-030-80674-3_7
- Ma Y., Wang P., Wang M., Sun M., Gu Z., Yang R. 2019. GABA mediates phenolic compounds accumulation and the antioxidant system enhancement in germinated hulless barley under NaCl stress. — Food Chem. 270: 593–601. https://doi.org/10.1016/j.foodchem.2018.07.092
- Lattanzio V. 2013. Phenolic compounds: introduction. — In: Natural products. Springer, Berlin, Heidelberg. P. 1543–1580. https://doi.org/10.1007/978-3-642-22144-6_57
- Cheynier V., Comte G., Davies K. M., Lattanzio V., Martens S. 2013. Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. — Plant Physiol. Bioch. 72: 1–20. https://doi.org/10.1016/j.plaphy.2013.05.009
- Meraj T. A., Fu J., Raza M. A., Zhu C., Shen Q., Xu D., Wang Q. 2020. Transcriptional factors regulate plant stress responses through mediating secondary metabolism. — Genes. 11(4): 346. https://doi.org/10.3390/genes11040346
- Jan R., Asaf S., Numan M., Lubna, Kim K. M. 2021. Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. — Agronomy. 11(5): 968. https://doi.org/10.3390/agronomy11050968
- Yadav B., Jogawat A., Rahman M. S., Narayan O.P. 2021. Secondary metabolites in the drought stress tolerance of crop plants: A review. — Gene Rep. 23: 101040. https://doi.org/10.1016/j.genrep.2021.101040
- Akhi M. Z., Haque M. M., Biswas M. S. 2021. Role of secondary metabolites to attenuate stress damages in plants. — In: Antioxidants – Benefits, Sources, Mechanisms of Action. IntechOpen. https://doi.org/10.5772/intechopen.95495
- Fang X., Yang C., Wei Y., Ma Q. 2011. Genomics grand for diversified plant secondary metabolites. — Plant Divers. 33(1): 53–64. https://journal.kib.ac.cn/EN/10.3724/SP.J.1143.2011.10233
- Rivero R. M., Ruiz J. M., García P. C., López-Lefebre L. R., Sánchez E., Romero L. 2001. Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. — Pl. Sci. 160(2): 315–321. https://doi.org/10.1016/S0168-9452(00)00395-2
- Naikoo M. I., Dar M. I., Raghib F., Jaleel H., Ahmad B., Raina A., Khan F. A., Naushin F. 2019. Role and regulation of plants phenolics in abiotic stress tolerance: An overview. — In: Plant signaling molecules. Elsevier: Amsterdam. P. 157–168. https://doi.org/10.1016/B978-0-12-816451-8.00009-5
- Parvin K., Nahar K., Mohsin S. M., Al Mahmud J., Fujita M., Hasanuzzaman M. 2022. Plant phenolic compounds for abiotic stress tolerance. — In: Managing Plant Production Under Changing Environment. Springer, Singapore. P. 193–237. https://doi.org/10.1007/978-981-16-5059-8_8
- Chen S., Wang Q., Lu H., Li J., Yang D., Liu J., Yan C. 2019. Phenolic metabolism and related heavy metal tolerance mechanism in Kandelia obovata under Cd and Zn stress. — Ecotox. Environ. Safe. 169: 134–143. https://doi.org/10.1016/j.ecoenv.2018.11.004
- Поливанова О. Б., Чередниченко М. Ю. 2023. Регуляция и метаболическая инженерия центрального фенилпропаноидного метаболического пути в ответ на воздействие стрессовых факторов у растений. — Вопросы биологической, медицинской и фармацевтической химии. 26(5): 3–9. https://bmpcjournal.ru/ru/25877313-2023-05-01 Polivanova O. B., Cherednichenko M. Yu. 2023. Regulation and metabolic engineering of the general phenylpropanoid metabolic pathway in response to stress in plants. — Problems of Biological, Medical and Pharmaceutical Chemistry. 26(5): 3–9. https://bmpcjournal.ru/en/25877313-2023-05-01 (In Russian)
- Petridis A., Therios I., Samouris G., Tananaki C. 2012. Salinity-induced changes in phenolic compounds in leaves and roots of four olive cultivars (Olea europaea L.) and their relationship to antioxidant activity. — Environ. Exp. Bot. 79: 37–43. https://doi.org/10.1016/j.envexpbot.2012.01.007
- Leopoldini M., Russo N., Chiodo S., Toscano M. 2006. Iron chelation by the powerful antioxidant flavonoid quercetin. — J. Agr. Food Chem. 54(17): 6343–6351. https://doi.org/10.1021/jf060986h
- Bartwal A., Mall R., Lohani P., Guru S. K., Arora S. 2013. Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. — J. Plant Growth Regul. 32(1): 216–232. http://doi.org/10.1007/s00344-012-9272-x
- Singh P., Arif Y., Bajguz A., Hayat S. 2021. The role of quercetin in plants. — Plant Physiol. Bioch. 166: 10–19. https://doi.org/10.1016/j.plaphy.2021.05.023
- Laoué J., Fernandez C., Ormeño E. 2022. Plant flavonoids in Mediterranean species: A focus on flavonols as protective metabolites under climate stress. — Plants. 11(2): 172. https://doi.org/10.3390/plants11020172
- Agati G., Tattini M. 2010. Multiple functional roles of flavonoids in photoprotection. —New Phytol. 186(4): 786–793.https://doi.org/10.1111/j.1469-8137.2010.03269.x
- Agati G., Azzarello E., Pollastri S., Tattini M. 2012. Flavonoids as antioxidants in plants: location and functional significance. — Plant Sci. 196: 67–76. https://doi.org/10.1016/j.plantsci.2012.07.014
- Davies K. M., Albert N. W., Zhou Y., Schwinn K. E. 2018. Functions of flavonoid and betalain pigments in abiotic stress tolerance in plants. — Ann. Pl. Rev. Online. 1(1): 21–62. https://doi.org/10.1002/9781119312994.apr0604
- Rice-Evans C., Miller N., Paganga G. 1997. Antioxidant properties of phenolic compounds. — Trends Plant Sci. 2(4): 152–159. https://doi.org/10.1016/S1360-1385(97)01018-2
- Nakabayashi R., Yonekura-Sakakibara K., Urano K., Suzuki M., Yamada Y., Nishizawa T., Matsuda F., Kojima M., Sakakibara H., Shinozaki K., Michael A. J., Tohge T., Yamazaki M.I., Saito K. 2014. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. — Pl. J. 77(3): 367–379. https://doi.org/10.1111/tpj.12388
- Corso M., Perreau F., Mouille G., Lepiniec L. 2020. Specialized phenolic compounds in seeds: structures, functions, and regulations. — Plant Sci. 296: 110471. https://doi.org/10.1016/j.plantsci.2020.110471
- Kumar S., Pandey A. K. 2013. Chemistry and biological activities of flavonoids: an overview. — Sci. World J. 2013: 162570. https://doi.org/10.1155/2013/162750
- Баяндина И. И., Загурская Ю. В. 2013. Экологические условия и накопление фенольных соединений в лекарственных растениях. — В сб.: Лекарственные растения: фундаментальные и прикладные проблемы. Мат-лы I Междунар. научн. конф. Новосибирск. С. 130–136. https://nsau.edu.ru/file/17251/Bayandina I. I., Zagurskaya Yu. V. 2013. [Ecological conditions and accumulation of phenolic compounds in medicinal plants]. — In: [Medicinal plants: fundamental and applied problems. Materials of the Ist International scientific conference]. Novosibirsk. P. 130–136. https://nsau.edu.ru/file/17251/ (In Russian)
- Heim K. E., Tagliaferro A. R., Bobilya D. J. 2002. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. — J. Nutr. Biochem. 13(10): 572–584. https://doi.org/10.1016/S0955-2863(02)00208-5
- Parvin K., Hasanuzzaman M., Bhuyan M. H. M. B., Mohsin S. M., Fujita M. 2019. Quercetin mediated salt tolerance in tomato through the enhancement of plant antioxidant defense and glyoxalase systems. — Plants. 8(8): 247. https://doi.org/10.3390/plants8080247
- Šamec D., Karalija E., Šola I., Vujčíć Bok V., Salopek-Sondi B. 2021. The role of polyphenols in abiotic stress response: the influence of molecular structure. — Plants. 10(1): 118. https://doi.org/10.3390/plants10010118
- Erlejman A. G., Verstraeten S. V., Fraga C. G., Oteiza P. I. 2004. The interaction of flavonoids with membranes: potential determinant of flavonoid antioxidant effects. — Free Radic. Res. 38(12): 1311–1320. https://doi.org/10.1080/10715760400016105
- Treutter D. 2006. Significance of flavonoids in plant resistance: a review. — Environ. Chem. Lett. 4(3): 147–157. https://doi.org/10.1007/s10311-006-0068-8
- Dixon R. A., Paiva N. L. 1995. Stress-induced phenylpropanoid metabolism. — The Plant Cell. 7(7): 1085–1097. https://doi.org/10.1105/tpc.7.7.1085
- Yildiztugay E., Ozfidan-Konakci C., Karahan H., Kucukoduk M., Turkan I. 2019. Ferulic acid confers tolerance against excess boron by regulating ROS levels and inducing antioxidant system in wheat leaves (Triticum aestivum). — Environ. Exp. Bot. 161: 193–202. https://doi.org/10.1016/j.envexpbot.2018.10.029
- El-Soud W. A., Hegab M. M., AbdElgawad H., Zinta G., Asard H. 2013. Ability of ellagic acid to alleviate osmotic stress on chickpea seedlings. — Plant Physiol. Bioch. 71: 173–183. https://doi.org/10.1016/j.plaphy.2013.07.007
- Ozfidan-Konakci C., Yildiztugay E., Yildiztugay A., Kucukoduk M. 2019. Cold stress in soybean (Glycine max L.) roots: exogenous gallic acid promotes water status and increases antioxidant activities. — Bot. Serbica. 43(1): 59–71. https://doi.org/10.2298/BOTSERB1901059O
- Gharibi S., Tabatabaei B. E. S., Saeidi G., Talebi M., Matkowski A. 2019. The effect of drought stress on polyphenolic compounds and expression of flavonoid biosynthesis related genes in Achillea pachycephala Rech.f. — Phytochemistry. 162: 90–98. https://doi.org/10.1016/j.phytochem.2019.03.004
- Gharibi S., Tabatabaei B. E. S., Saeidi G., Goli S. A. H. 2016. Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of Achillea species. — Appl. Biochem. Biotechnol. 178(4): 796–809. https://doi.org/10.1007/s12010-015-1909-3
- Yang Z. C., Wu N., Tang L., Yan X. H., Yuan M., Zhang Z. W., Yuan S., Zhang H. Y., Chen Y. E. 2019. Exogenous salicylic acid alleviates the oxidative damage of Arabidopsis thaliana by enhancing antioxidant defense systems under high light. — Biol. Plant. 63: 474–483. https://doi.org/10.32615/bp.2019.074
- Chavoushi M., Najafi F., Salimi A., Angaji S. A. 2020. Effect of salicylic acid and sodium nitroprusside on growth parameters, photosynthetic pigments and secondary metabolites of safflower under drought stress. — Sci. Hortic. 259: 108823. https://doi.org/10.1016/j.scienta.2019.108823
- Zhang Z., Lan M., Han X., Wu J., Wang-Pruski G. 2020. Response of ornamental pepper to high-temperature stress and role of exogenous salicylic acid in mitigating high temperature. — J. Plant Growth Regul. 39(1): 133–146. https://doi.org/10.1007/s00344-019-09969-y
- Давидянц Э. С. 2023. Тритерпеновые гликозиды как регуляторы роста растений: потенциал и перспективы использования (обзор). — Химия растительного сырья. 1: 5–34. https://doi.org/10.14258/jcprm.20230111368 Davidyants E. S. 2023. Triterpene glycosides as plant growth regulators: potential and prospects for use (review). — Khimija rastitel’nogo syr’ja. 1: 5–34. https://doi.org/10.14258/jcprm.20230111368 (In Russian)
- Boncan D. A. T., Tsang S. S. K., Li C., Lee I. H. T., Lam H. M., Chan T. F., Hui J. H. L. 2020. Terpenes and terpenoids in plants: interactions with environment and insects. — Int. J. Mol. Sci. 21(19): 7382. https://doi.org/10.3390/ijms21197382
- Vickers C. E., Gershenzon J., Lerdau M. T., Loreto F. 2009. A unified mechanism of action for volatile isoprenoids in plant abiotic stress. — Nat. Chem. Biol. 5(5): 283–291. https://doi.org/10.1038/nchembio.158
- Velikova V., Edreva A., Loreto F. 2004. Endogenous isoprene protects Phragmites australis leaves against singlet oxygen. — Physiol. Plant. 122(2): 219–225. https://doi.org/10.1111/j.0031-9317.2004.00392.x
- Sharkey T. D., Wiberley A. E., Donohue A. R. 2008. Isoprene emission from plants: why and how. — Ann. Bot. 101(1): 5–18. https://doi.org/10.1093/aob/mcm240
- Sharkey T. D., Singsaas E. L. 1995. Why plants emit isoprene. — Nature. 374(6525): 769. https://doi.org/10.1038/374769a0
- Singsaas E. L., Lerdau M., Winter K., Sharkey T. D. 1997. Isoprene increases thermotolerance of isoprene-emitting leaves. — Plant Physiol. 115(4): 1413–1420. https://doi.org/10.1104/pp.115.4.1413
- Punetha A., Kumar D., Suryavanshi P., Padalia R. C., Venkatesha K. T. 2022. Environmental abiotic stress and secondary metabolites production in medicinal plants: a review. — J. Agr. Sci. 28(3): 351–362. https://doi.org/10.15832/ankutbd.999117
Supplementary files
