Abiotic impacts on nitrogen content, pigment complex and water exchange parameters of Pinus sylvestris (Pinaceae) needles on Post-industrial lands

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the results of studies on the traits of the pigment complex and nitrogen content in current-year and 1-year-old needles and parameters of water metabolism in 30-year-old Scots pine (Pinus sylvestris L.) trees planted on post-industrial land in a sand-gravel quarry and growing naturally in a mid-boreal lingonberry pine forest (Republic of Karelia). The post-industrial site was remediated by planting 1-year-old P. sylvestris seedlings in plots with: 1) sandy–gravelly mineral soil (sample plots SP 1 and SP 2) and 2) peat-enriched soil (SP 3). Surveys were carried out during two growing seasons with contrasting conditions: 2021 (hot and dry) and 2022 (warm and rainy). The influence of phytocenotic conditions and climatic factors on the studied traits was revealed. Among the remediated plots, the content of chlorophylls and carotenoids in needles was the highest in the fertilized plot SP 3. The low fertility of the post-industrial plots SP 1 and SP 2 compared to the natural lingonberry pine forest conditions (SP 4) predetermines the lowest content of nitrogen, green and yellow pigments in young and mature needles, and, on the contrary, the highest proportion of Chl a for the Chl a/Chl b ratio. The higher Chl a/Chl b ratio in the needles of trees in low-density stands in SP 1 and SP 2 compared to high-density stands of SP 3 and SP 4 reflects the rearrangement of the pigment complex in response to the local light conditions. The negative effect of high water deficit in needles on pigment complex formation under the hot and dry conditions of the growing season 2021 is shown. The results indicate the pigment system of young and mature needles of P. sylvestris employ similar adaptive mechanisms under changing environmental conditions, which can be used to monitor the state and predict the productivity of ecosystems on disturbed lands.

Full Text

Restricted Access

About the authors

V. B. Pridacha

Forest Research Institute, Karelian Research Centre, Russian Academy of Sciences

Author for correspondence.
Email: pridacha@krc.karelia.ru
Russian Federation, Petrozavodsk

N. V. Tumanik

Forest Research Institute, Karelian Research Centre, Russian Academy of Sciences

Email: pridacha@krc.karelia.ru
Russian Federation, Petrozavodsk

D. Е. Semin

Forest Research Institute, Karelian Research Centre, Russian Academy of Sciences

Email: pridacha@krc.karelia.ru
Russian Federation, Petrozavodsk

References

  1. IPCC Climate change 2013: The physical science basis. Contribution of Working group I to the Fifth assessment report of the Intergovernmental panel on climate change. 2013. Cambridge. 1535 p. https://www.globalchange.gov/reports/ipcc-climate-change-2013-physical-science-basis
  2. [Monitoring of Russian forests biodiversity: methodology and methods]. 2008. Moscow. 453 p. (In Russian)
  3. Sumina O.I. 2013. [Formation of vegetation in technogenic habitats of the Russian Far North]. St. Petersburg. 340 p. (In Russian)
  4. [State report on the state of the environment of the Republic of Karelia in 2021]. 2022. Petrozavodsk. 263 p. http://resources.krc.karelia.ru/krc/doc/presentations/gosdoklad-rk-2021.pdf (In Russian)
  5. Fedorets N.G., Sokolov A.I., Kryshen' A.M., Medvedeva M.V., Kostina E.E. 2011. [Formation of forest communities on technogenic lands in the north-west of the taiga zone of Russia]. Petrozavodsk. 130 p. (In Russian)
  6. Sokolov A.I. 2016. [Increasing the resource potential of taiga forests by silvicultural method]. Petrozavodsk. 178 p. http://elibrary.krc.karelia.ru/303/1/povyshenie_il_2016.pdf (In Russian)
  7. Likhanova I.A., Kuznetsova Ye.G., Novakovskiy A.B. 2020. Vegetative cover forming in quarries after forest recultivation being performed in middle taiga subzone of the north-east of the European Russia. — Russ. J. Forest Sci. 5: 424—432. https://doi.org/10.31857/S0024114820050095 (In Russian)
  8. Photosynthetic pigments — chemical structure, biological function and ecology. 2014. Syktyvkar. 448 p. https://ib.komisc.ru/rus/book-2014/1395-photosynthetic-pigments-chemical-structure-biological-function-and-ecology
  9. Lambers H., Oliveira R.S. 2019. Plant physiological ecology. Cham. 736 p. https://doi.org/10.1007/978-3-030-29639-1
  10. Slemnev N.N., Sheremetyev S.N., Maslova T.G., Tsoozh Sh., Altantsoozh A. 2012. Diversity of photosynthetic apparatus in plants of Mongolia: analysis of biological, ecological and evolutional series. — Botanicheskii Zhurnal. 97(11): 1377–1396. https://www.elibrary.ru/item.asp?id=18041535 (In Russian)
  11. Maslova T.G., Markovskaya E.F., Slemnev N.N. 2021. Functions of carotenoids in leaves of higher plants (review). — Biol. Bull. Rev. 11(5): 476–487. https://doi.org/10.1134/S2079086421050078
  12. Valladares F., Niinemets Ü. 2008. Shade tolerance, a key plant feature of complex nature and consequences. — Annu. Rev. Ecol. Evol. Syst. 39: 237–257. https://doi.org/10.1146/annurev.ecolsys.39.110707.173506
  13. Gratani L. 2014. Plant phenotypic plasticity in response to environmental factors. —Advances in botany. 2014: 208747. https://doi.org/10.1155/2014/208747
  14. Poorter H., Niinemets Ü., Ntagkas N., Siebenkäs A., Mäenpää M., Matsubara S., Pons T. 2019. A meta-analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. — New Phytol. 223(3): 1073–1105. https://doi.org/10.1111/nph.15754
  15. Suvorova G.G., Oskorbina M.V., Kopytova L.D., Yan’kova L.S., Popova E.V. 2011. Seasonal changes in photosynthetic activity and chlorophylls in the Scots pine and Siberian spruce with optimal or insufficient moistening. — Contemp. Probl. Ecol. 4(6): 626–633. https://doi.org/10.1134/S1995425511060105
  16. Major J.E., Mosseler A. 2021. Chlorophyll pigment and needle macronutrient responses and interactions to soil moisture and atmospheric CO2 treatments of eight pine and spruce species. — Trees. 35(6): 2069–2085. https://doi.org/10.1007/s00468-021-02173-0
  17. Ghazghazi H., Riahi L., Yangui I., Messaoud C., Rzigui T., Nasr Z. 2022. Effect of drought stress on physio-biochemical traits and secondary metabolites production in the woody species Pinus halepensis Mill. at a juvenile development stage. —J. Sustain. For. 41(9): 878–894. https://doi.org/10.1080/10549811.2022.2048263
  18. Tuzhilkina V.V. 2012. Pigment complex of pine in phytocenoses of the European North-East. — Russ. J. Forest Sci. 4: 16–23. https://www.elibrary.ru/item.asp?id=17929380 (In Russian)
  19. Tuzhilkina V.V. 2017. Photosynthetic pigments of the Siberian spruce needles in the middle taiga forests of the European North-East Russia. — Sib. J. Forest Sci. 1: 65–73. https://doi.org/10.15372/SJFS20170107 (In Russian)
  20. Sudachkova N.E., Milyutina I.L., Romanova L.I. 2012. Biochemical adaptation of conifers to stressful conditions of Siberia. Novosibirsk. 178 p. (In Russian)
  21. Novitskaya Yu.E., Chikina P.F., Sofronova G.I., Gabukova V.V., Makarevsky M.F. 1985. [Physiological and biochemical bases of growth and adaptation of pine in the North]. Leningrad. 156 p. (In Russian)
  22. Zagirova S.V. 1999. [Structure of assimilation apparatus and CO2-gas exchange in conifers]. Ekaterinburg. 108 p. (In Russian)
  23. Plyusnina S.N., Tuzhilkina V.V. 2021. Structural and functional characteristics of the photosynthetic apparatus of Pinus sylvestris (Pinaceae) regrowth in the middle taiga subzone of the European North-East. — Botanicheskii Zhurnal. 106(11): 1072–1084. https://doi.org/10.31857/S0006813621110077 (In Russian)
  24. Novitskaya Yu.E., Chikina P.F. 1980. [Nitrogen metabolism in pine in the North]. Leningrad. 166 p. (In Russian)
  25. Sudachkova N.E., Girs G.I., Prokushkin S.G. 1990. [Physiology of Scots pine]. Novosibirsk. 248 p. (In Russian)
  26. Helmisaari H.S. 1992. Spatial and age-related variation in nutrient concentrations of Pinus sylvestris needles. — Silva Fennica. 26(3): 145–153. https://doi.org/10.14214/sf.a15643
  27. Bobkova K.S., Zagirova S.V. 1999. [Some aspects of structural and functional organization in pine needles of different ages]. — Rus. J. For. Sci. 4: 58–63. (In Russian)
  28. Pridacha V.B., Sazonova T.A. 2004. Age changes and ratio of nitrogen, phosphorus and potassium contents in the organs of Pinus sylvestris and Picea abies (Pinaceae). — Botanicheskii Zhurnal. 89(9): 1486–1496. https://elibrary.ru/item.asp?id=17076074 (In Russian)
  29. Pridacha V.B., Sazonova T.A. 2013. Macroelement composition in Pinus sylvestris (Pinaceae) in relation to ontogenesis stage and vitality of branches. — Rastitelnye resursy. 49(3): 319–330. https://elibrary.ru/item.asp?id=19139456 (In Russian)
  30. Kazimirov N.I., Volkov A.D., Zyabchenko S.S., Ivanchikov A.A., Morozova R.M. 1977. [Metabolism and energy exchange in the pine forests of the European North]. Leningrad. 304 p. (In Russian)
  31. Tselniker Yu.L., Malkina I.S., Kovalev A.G., Chmora S.N., Mamaev V.V., Molchanov A.G. 1993. [The growth and CO2 exchange in forest trees]. Moscow. 256 p. (In Russian)
  32. Chernobrovkina N.P. 2001. [Ecophysiological characteristics of nitrogen utilization by Scots pine]. St. Petersburg. 175 p. (In Russian)
  33. Suvorova G.G. 2009. [Photosynthesis of coniferous trees in Siberia]. Novosibirsk. 194 p. (In Russian)
  34. Sazonova T.A., Bolondinskii V.K., Pridacha V.B. 2011. [Eco-physiological characteristics of Scots pine]. Petrozavodsk. 207 p. (In Russian)
  35. Kattge J., Bönisch G., Díaz S., et al. 2020. TRY plant trait database – enhanced coverage and open access. — Glob Change Biol. 26(1): 119–188. https://doi.org/10.1111/gcb.14904
  36. Tsandekova O.L., Neverova O.A. 2015. Analysis of the content of essential oils and pigments in the needles of Pinus sylvestris L. in the conditions of a coal dump. — Izvestia RAS SamSC. 17(4): 226–231. http://www.ssc.smr.ru/media/journals/izvestia/2015/2015_4_226_231.pdf (In Russian)
  37. Lukina N., Chukina N., Filimonova E., Glazyrina M., Uchaev A., Borisova G. 2022. Morphophysiological features of Pinus sylvestris L. in artificial plants on dredge dump after gold mining. — Forestry information. 3: 145–157. https://doi.org/10.24419/LHI.2304-3083.2022.3.13 (In Russian)
  38. Kozubov G.M., Muratova E.N. 1986. [Modern gymnosperms (morphological-systematic review and karyology)]. Leningrad. 192 p. (In Russian)
  39. Farjon A., Filer D. 2013. An atlas of the world's conifers: an analysis of their distribution, biogeography, diversity and conservation status. Brill. 512 p. https://doi.org/10.1163/9789004211810
  40. Rysin L.P. 2015. [Scots pine forest biogeocenology]. Moscow. 303 p. (In Russian)
  41. Kuznetsova T., Mandre M., Klõseiko J., Pärn H. 2010. A comparison of the growth of Scots pine (Pinus sylvestris L.) in a reclaimed oil shale post-mining area and in a Calluna site in Estonia. — Environ. Monit. Assess. 166: 257–65. https://doi.org/10.1007/s10661-009-0999-1
  42. Bęś A., Warmiński K., Adomas B. 2019. Long-term responses of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) to the contamination of light soils with diesel oil. — Environ. Sci. Pollut. Res. Int. 26(11): 10587–10608. https://doi.org/10.1007/s11356-019-04328-6
  43. Peel M.C., Finlayson B.L., McMahon T.A. 2007. Updated world map of the Köppen-Geiger climate classification. — Hydrol. Earth Syst. Sci. 11(5): 1633–1644. https://doi.org/10.5194/hess-11-1633-2007
  44. Nazarova L.E. 2021. Climatic conditions in the Republic of Karelia. — Modern research of northern water bodies. Petrozavodsk. P. 7–16. https://www.cnshb.ru/Vexhib/vex_news/2022/vex_220305/04059743.pdf (In Russian)
  45. Kostina E.E., Akhmetova G.V., Pekkoev A.N., Kharitonov V.A., Kryshen A.M. 2022. Development of vegetation cover of the forest restoration sites (case study of a sand and gravel pit in Karelia). — Rastitel'nye resursy. 3: 290–310. https://elibrary.ru/item.asp?id=49420236 (In Russian)
  46. Pridacha V.B., Akhmetova G.V., Semin D.E. 2024. Effect of forest reclamation on carbon stocks and respiration of soils of natural and technogenic ecosystems of southern Karelia. — Eurasian Soil Sci. 57(2): 301–312. https://doi.org/10.1134/S106422932360286X
  47. Lichtenthaler H. 1987. Chlorophylls and carotenoids – pigments of photosynthetic biomembranes. — Methods in Enzymol. 148: 350–382.
  48. Gavrilenko V.F., Zhigalova T.V. 2003. [Extended practical course on photosynthesis]. Moscow. 256 p. (In Russian)
  49. Makhonina G.I. 2003. [Ecological aspects of soil formation in technogenic ecosystems of the Urals]. Ekaterinburg. 356 p. (In Russian)
  50. Ivanov L.A., Ivanova L.A., Ronzhina D.A., Yudina P.K. 2013. Changes in the chlorophyll and carotenoid contents in the leaves of steppe plants along a latitudinal gradient in South Ural. — Russ. J. Plant Physiol. 60(6): 812–820. https://doi.org/10.1134/S1021443713050075
  51. Dymova O.V., Golovko T.K. 2019. Photosynthetic pigments in native plants of the taiga zone at the European Northeast Russia. — Russ. J. Plant Physiol. 66(3): 384–392. https://doi.org/10.1134/S1021443719030038
  52. Bender O.G., Goroshkevich S.N. 2020. Gas exchange and photosynthetic pigment content in latitudinal ecotypes of the Siberian stone pine ex situ. — Sib. J. Forest Sci. 5: 28–36. https://doi.org/10.15372/SJFS20200503 (In Russian)
  53. Esteban R., Barrutia O., Artetxe U., Fernández-Marín B., Hernández A., García-Plazaola J.I. 2015. Internal and external factors affecting photosynthetic pigment composition in plants: a meta-analytical approach. — New Phytol. 206(1): 268– 280. https://doi.org/10.1111/nph.13186
  54. Simkin A.J., Kapoor L., Doss C.G.P., Hofmann T.A., Lawson T., Ramamoorthy S. 2022. The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. — Photosynth. Res. 152(1): 23–42. https://doi.org/10.1007/s11120-021-00892-6
  55. Tyutereva E.V., Dmitrieva V.A., Voitsekhovskaja O.V. 2017. Chlorophyll b as a source of signals steering plant development (review). — Agricultural Biology. 52(5): 843–855. https://doi.org/10.15389/agrobiology.2017.5.843eng
  56. Brodribb T.J., Cochard H. 2009. Hydraulic failure defines the recovery and point of death in water-stressed conifers. — Plant Physiol. 149(1): 575–584. https://doi.org/10.1104/pp.108.129783
  57. Urli M., Porté A. J., Cochard H., Guengant Y., Burlett R., Delzon S. 2013. Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. — Tree Physiol. 33(7): 672–683. https://doi.org/10.1093/treephys/tpt030
  58. Voronin P.Y., Rakhmankulova Z.F., Tarnopolskaya E.E., Kuznetsov Vl.V. 2018. Closure of stomata in water-stressed pine needles results from the decreased water potential of the mesophyll apoplast in the substomatal cavity. — Russ. J. Plant Physiol. 65(4): 518–523. https://doi.org/10.1134/S1021443718030081
  59. Dymova O.V., Golovko T.K. 2018. Photosynthetic pigments: functioning, ecology, biological activity. — Izvestia RAS Ufa SC. 3(4): 5–16. https://doi.org/10.31040/2222-8349-2018-4-3-5-16 (In Russian)
  60. Khorobrykh S., Havurinne V., Mattila H., Tyystjärvi E. 2020. Oxygen and ROS in photosynthesis. — Plants. 9(1): 91. https://doi.org/10.3390/plants9010091
  61. Song Y., Feng L., Alyafei M.A.M., Jaleel A., Ren M. 2021. Function of chloroplasts in plant stress responses. — Int. J. Mol. Sci. 22(24): 13464. https://doi.org/10.3390/ijms222413464
  62. Li M., Kim C. 2022. Chloroplast ROS and stress signaling. — Plant Commun. 3(1): 100264. https://doi.org/10.1016/j.xplc.2021.100264
  63. Sazonova T.A., Pridacha V.B. 2015. The effect of moisture availability of sandy soils on water exchange of Scots pine in Southern Karelia. — Russ. J. Forest Sci. 6: 470–477. https://elibrary.ru/item.asp?id=25067432 (In Russian)
  64. Sazonova T.A., Bolondinskii V.K., Pridacha V.B. 2019. Resistance to moisture transport in the conductive system of Scots pine. — Russ. J. Forest Sci. 6: 556–566. https://doi.org/10.1134/S0024114819060081 (In Russian)
  65. Sazonova T.A., Bolondinskii V.K., Pridacha V.B. 2017. The effect of water deficit in needles on photosynthesis of the Scots pine under normal soil moistening. — Russ. J. Forest Sci. 4: 311–318. https://doi.org/10.7868/S0024114817040076 (In Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Variability of air temperature (T) and precipitation (P) from May (V) to September (IX) 2021 and 2022 based on true monthly mean (1) and monthly average long-term values over the 1991–2020 period (2) for Karelia. X-axis – month and year of the study; y-axis – air temperature, C (main axis), precipitation, mm (auxiliary axis).

Download (93KB)
3. Fig. 2. Nitrogen content in current-year (A) and 1-year-old (B) needles of Pinus sylvestris on post-technogenic lands (SP 1, SP 2, SP 3) and in natural lingonberry pine forest (SP 4) in July 2021 and 2022. X-axis – year of the study; y-axis – element content, % dry weight.

Download (53KB)
4. Fig. 3. The content of Chl а (I), Chl b (II), Chl (а+ b) (III), Car (IV), Chl a/Chl b ratio(V) and LHC (VI) in current-year (A) and 1-year-old (B) needles of Pinus sylvestris on post-technogenic lands (SP 1, SP 2, SP 3) and in natural lingonberry pine forest (SP 4) in July 2021 and 2022. X-axis – year of the study; y-axis – pigment content, mg/g wet weight, LHC, %.

Download (416KB)
5. Fig. 4. Predawn (max) and midday (min) water potential of shoot in Pinus sylvestris on post-technogenic lands (SP 1, SP 2, SP 3) and in natural lingonberry pine forest (SP 4) in July 2021 and 2022. X-axis – year of the study; y-axis – water potential, MPa.

Download (113KB)

Copyright (c) 2024 Russian Academy of Sciences