Кариотип травяной лягушки Rana temporaria

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Работа посвящена цитогенетическому исследованию одного из модельных видов амфибий — травяной лягушки Rana temporaria. Цель работы — создание стандартного кариотипа R. temporaria, выявление хромосомных маркеров и уточнение структуры генома. Мы проанализировали структуру кариотипа, распределение гетерохроматина и специфическую локализацию некоторых повторяющихся последовательностей на хромосомах, используя различные методы окрашивания, включая рутинное окрашивание красителем Гимза, выявление C-дисков, окрашивание флуоресцентными красителями DAPI, CMA3 и SYBR Green и флуоресцентную in situ гибридизацию (FISH) с использованием зондов к 5S рДНК и тандемному повтору S1A. Кариотип состоит из 26 хромосом (NF = 52): 5 пар крупных и 8 пар мелких хромосом. C-окрашивание выявило гетерохроматиновые блоки в центромерных районах большинства хромосом, а на некоторых хромосомах были обнаружены дополнительные интерстициальные С-блоки. Окрашивание как DAPI, так и CMA3 показало в целом равномерную флуоресценцию на всех хромосомах, за исключением единственного DAPI-негативного участка, соответствующего ЯОР. Окрашивание SYBR Green показало интенсивную флуоресценцию в центромерных районах некоторых хромосом. Методом FISH с зондом к 5S рДНК мы подтвердили расположение этого гена на коротком плече 7-й пары хромосом. Картирование методом FISH тандемного повтора S1A показало расположение сигналов на обоих плечах хромосомы 1, на коротких плечах хромосом 2—5 и на длинных плечах хромосом — 7 и 9. Обсуждаются трудности в выявлении G- и Q-дисков на хромосомах амфибий. Полученные данные сравниваются с результатами предыдущих исследований. Впервые использованное нами для описания кариотипа окрашивание SYBR Green может стать полезным методом для анализа хромосом амфибий в связи с трудностями выявления дисков с помощью традиционных методов.

Полный текст

Доступ закрыт

Об авторах

А. О. Травина

Институт цитологии РАН

Автор, ответственный за переписку.
Email: alotra1@yandex.ru
Россия, 194064, Санкт-Петербург

Г. Н. Почукалина

Институт цитологии РАН

Email: alotra1@yandex.ru
Россия, 194064, Санкт-Петербург

О. И. Подгорная

Институт цитологии РАН

Email: alotra1@yandex.ru
Россия, 194064, Санкт-Петербург

В. Н. Стефанова

Институт цитологии РАН

Email: alotra1@yandex.ru
Россия, 194064, Санкт-Петербург

Список литературы

  1. Бирштейн В. Я. 1981. Особенности дифференциальных окрасок хромосом Anura на примере хромосом некоторых видов Rana и Bufo. Зоологический журнал. Т. 60. № 2. С. 246. (Birsttein V. Y. 1981. Specific differential staining patterns of chromosomes in the Anura, some species of the genera Rana and Bufo taken as an example. J. Zool. V. 60. No. 2. P. 246.)
  2. Манило В. В. 2005. Хромосомные нарушения (миксоплоидия) у бурых лягушек (Anura, Amphibia) из некоторых областей Украины. Збірник праць Зоологiчного музею. № 37. С. 100. (Manilo V. V. 2005. Chromosomal disorders (mixoploidy) in brown frogs (Anura, Amphibia) from some regions of Ukraine. Collection of works of the Zoological Museum. No. 37. P. 100.)
  3. Песков В. Н., Коцержинская И. М., Манило В. В., Писанец Е. М. 2004. Морфологическая дифференциация и диагностика бурых лягушек Rana arvalis, R. temporaria и R. dalmatina (Amphibia, Ranidae) с территории Украины. Vestnik zoologii. Т. 38. № 6. С. 29. (Peskov V. N., Kotserzhinskaya I. M., Manilo V. V., Pisanets E. M. 2004. Morphological differentiation and diagnosis of brown frogs Rana arvalis, R. temporaria and R. dalmatina (Amphibia, Ranidae) from the territory of Ukraine. Bull. Zool. V. 38. No. 6. P. 29.)
  4. Ananias F., Modesto Á. D.S., Celi Mendes S., Felgueiras Napoli M. 2007. Unusual primitive heteromorphic ZZ/ZW sex chromosomes in Proceratophrys boiei (Anura, Cycloramphidae, Alsodinae), with description of C‐Band interpopulational polymorphism. Hereditas (London, U. K.). V. 144. P. 206. https://doi.org/10.1111/j.2007.0018-0661.02026.x
  5. Baldari C. T., Amaldi F. 1977. Length and interspersion of repetitive and non repetitive DNA sequences in four Amphibian species with different genome sizes. Chromosoma. V. 61. P. 359. https://doi.org/10.1007/BF00288619
  6. Birstein V. J. 1984. Localization of NORs in karyotypes of four Rana species. Genetica. V. 64. P. 149. https://doi.org/10.1007/BF00115338
  7. Biscotti M. A., Olmo E., Heslop-Harrison J.S. 2015. Repetitive DNA in eukaryotic genomes. Chromosome Res. V. 23. P. 415. https://doi.org/10.1007/s10577-015-9499-z
  8. Bogolyubov D. S., Shabelnikov S. V., Travina A. O., Sulatsky M. I., Bogolyubova I. O. 2023. Special nuclear structures in the germinal vesicle of the common frog with emphasis on the so-called karyosphere capsule. J. Dev. Biol. V. 11. P. 44. https://doi.org/10.3390/jdb11040044
  9. Bozzoni I., Beccari E. 1978. Clustered and interspersed repetitive DNA sequences in four amphibian species with different genome size. Biochim. Biophys. Acta, Nucleic Acids Protein Synth. V. 520. P. 245. https://doi.org/10.1016/0005-2787(78)90224-1
  10. Briggs C., Jones M. 2005. SYBR Green I-induced fluorescence in cultured immune cells: a comparison with acridine orange. Acta Histochem. V. 107. P. 301. https://doi.org/10.1016/j.acthis.2005.06.010
  11. Cardone D. E., Feliciello I., Marotta M., Rosati C., Chinali G. 1997. A family of centromeric satellite DNAs from the European brown frog Rana graeca italica. Genome. V. 40. P. 774—781. https://doi.org/10.1139/g97-800
  12. Davidian A., Koshel E., Dyomin A., Galkina S., Saifitdinova A., Gaginskaya E. 2021. On some structural and evolutionary aspects of rDNA amplification in oogenesis of Trachemys scripta turtles. Cell Tiss. Res. V. 383. P. 853. https://doi.org/10.1007/s00441-020-03282-x
  13. Feliciello I., Picariello O., Chinali G. 2005. The first characterization of the overall variability of repetitive units in a species reveals unexpected features of satellite DNA. Gene. V. 349. P. 153. https://doi.org/10.1016/j.gene.2004.12.001
  14. Ferro J. M., Cardozo D. E., Suárez P., Boeris J. M., Blasco-Zúñiga A., Barbero G., Gomes A., Gazoni T., Costa W., Nagamachi C. Y., Rivera M., Parise-Maltempi P.P., Wiley J. E., Pieczarka J. C., Haddad C. F.B. et al. 2018. Chromosome evolution in Cophomantini (Amphibia Anura Hylinae). PLoS One. V. 13. Art. ID: e0192861. https://doi.org/10.1371/journal.pone.0192861
  15. Flemming W. 1882. Zellsubstanz, kern und zelltheilung. Leipzig, Ger.: F.C.W. Vogel.
  16. Frost D. R. 2024. Amphibian species of the world: an online reference. Version 6.2. https://amphibiansoftheworld.amnh.org/index.php
  17. Goodpasture C., Bloom S. E. 1975. Visualization of nucleolar organizer regions in mammalian chromosomes using silver staining. Chromosoma. V. 53. P. 37. https://doi.org/10.1007/BF00329389
  18. Gregory T. R. 2025. Animal genome size database. http://www.genomesize.com
  19. Gruzova M. N., Parfenov V. N. 1977. Ultrastructure of late oocyte nuclei in Rana temporaria. J. Cell Sci. V. 28. P. 1. https://doi.org/10.1242/jcs.28.1.1
  20. Guillemin C. 1967. Caryotypes de Rana temporaria (L.) et de Rana dalmatina (Bonaparte). Chromosoma. V. 21. P. 189. https://doi.org/10.1007/BF00343644
  21. Hellsten U., Harland R. M., Gilchrist M. J., Hendrix D., Jurka J., Kapitonov V., Ovcharenko I., Putnam N. H., Shu S., Taher L., Blitz I. L., Blumberg B., Dichmann D. S., Dubchak I., Amaya E. et al. 2010. The genome of the Western clawed frog Xenopus tropicalis. Science. V. 328. P. 633. https://doi.org/10.1126/science.1183670
  22. Ilicheva N. V., Pochukalina G. N., Podgornaya O. I. 2019. Actin depolymerization disrupts karyosphere capsule integrity but not residual transcription in late oocytes of the grass frog Rana temporaria. J. Cell. Biochem. V. 120. P. 15057. https://doi.org/10.1002/jcb.28767
  23. Iriki S. 1930. Studies on Amphibian chromosomes (I): on the chromosomes of Hyla arborea japonica GUENTHER. Mem. Coll. Sci., Univ. Kyoto, Ser. B. V. 5. P. 1.
  24. Ivanova N. G., Kartavtseva I. V., Stefanova V. N., Ostromyshenskii D. I., Podgornaya O. I. 2022. Tandem repeat diversity in two closely related hamster species–the Chinese hamster (Cricetulus griseus) and striped hamster (Cricetulus barabensis). Biomed. V. 10. Art. ID925. https://doi.org/10.3390/biomedicines10040925
  25. Karanova M. V. 2021. Low-temperature adaptation of the Rana temporaria gastrocnemius muscle at the onset of anabiosis. J. Evol. Biochem. Physiol. V. 57. P. 252. https://doi.org/10.1134/S0022093021020071
  26. Kirov I., Khrustaleva L., Van Laere K., Soloviev A., Meeus S., Romanov D., Fesenko I. 2017. DRAWID: User-friendly java software for chromosome measurements and idiogram drawing. Comparative Cytogenetics. V. 11. P. 747. https://doi.org/10.3897/compcytogen.v11i4.20830
  27. Kuramoto M. 1972. Karyotypes of the six species of frogs (Genus Rana) endemic to the Ryukyu islands. Caryologia. V. 25. P. 547. https://doi.org/10.1080/00087114.1972.10796509
  28. Kuwana C., Fujita H., Tagami M., Matsuo T., Miura I. 2021. Evolution of sex chromosome heteromorphy in geographic populations of the Japanese Tago’s brown frog complex. Cytogenet. Genome Res. V. 161. P. 23. https://doi.org/10.1159/000512964
  29. Kwon T. 2017. AmphiBase: a new genomic resource for non‐model amphibian species. Genesis. V. 55. Art. ID: e23010. https://doi.org/10.1002/dvg.23010
  30. Mao F., Leung W. Y., Xin X. 2007. Characterization of EvaGreen and the implication of its physicochemical properties for qPCR applications. BMC Biotechnol. V. 7. Art. ID: 76 (2007). https://doi.org/10.1186/1472-6750-7-76
  31. Matsui M., Seto T., Kohsaka Y., Borkin L. J. 1985. Bearing of chromosome C-banding patterns on the classification of Eurasian toads of the Bufo bufo complex. Amphibia–Reptilia. V. 6. P. 23.
  32. Mayr B., Rab P., Kalat M. 1986. Localisation of NORs and counterstain-enhanced fluorescence studies in Salmo gairdneri and Salmo trutta (pisces Salmonidae). Theor. Appl. Genet. V. 71. P. 703. https://doi.org/10.1007/BF00263267
  33. Minouchl O., Iriki S. 1931. Studies on amphibian chromosomes (II): on the chromosomes of Bufo bufo japonicus Schlegelii. Mem. Coll. Sci., Univ. Kyoto, Ser. B. V. 6. P. 39.
  34. Miura I. 1994. Sex chromosome differentiation in the Japanese brown frog Rana japonica. I. Sex-related heteromorphism of the distribution pattern of constitutive heterochromatin in chromosome no.4 of the Wakuya population. Zool. Sci. V. 11. P. 797.
  35. Miura I. 1995. The late replication banding patterns of chromosomes are highly conserved in the genera Rana, Hyla and Bufo (Amphibia: Anura). Chromosoma. V. 103. P. 567. https://doi.org/10.1007/BF00355322
  36. Miura I., Hasegawa Y., Ito M., Ezaz T., Ogata M. 2024. Disruption of sex-linked sox3 causes ZW female-to-male sex reversal in the Japanese frog Glandirana rugosa. Biomolecules. V. 14. Art. ID: 1566. https://doi.org/10.3390/biom14121566
  37. Morescalchi A. 1967. Le relazioni tra il cariotipo di anuri diplasioceli: I. Il corredo cromosomico di alcuni Ranidae. Caryologia. V. 20. P. 65.
  38. Nishioka M., Miura I., Saitoh K. 1993. Sex chromosomes of Rana rugosa with special reference to local differences in sex-determining mechanism. Sci. Report Lab. Amphibian Biol. Hiroshima Univ. V. 12. P. 55. https://doi.org/10.15027/14532
  39. Nishioka M, Okumoro H., Hiroaki U. E.D.A., Ryuzaki M. 1987. Karyotypes of brown frogs distributed in Japan, Korea, Europe and North America. Sci. Report Lab. Amphibian Biol. Hiroshima Univ. V. 9. P. 165.
  40. Picariello O., Feliciello I., Bellinello R., Chinali G. 2002. S1 satellite DNA as a taxonomic marker in brown frogs: molecular evidence that Rana graeca graeca and Rana graeca italica are different species. Genome. V. 45. P. 63. https://doi.org/10.1139/g01-125
  41. Picariello O., Safaei-Mahroo B., Chinali G. 2018. S1 satellite DNA confirms the species rank of Rana pseudodalmatina Eiselt & Schmidtler, 1971. Salamandra. V. 54. P. 269.
  42. Ploskaya-Chaibi M., Voitovich A. M., Novitsky R. V., Bouhadad R. 2015. B-chromosome and V-shaped spot asymmetry in the common frog (Rana temporaria L.) populations. C. R. Biol. V. 338. P. 161. https://doi.org/10.1016/j.crvi.2014.12.005
  43. Prokofieva A. 1935. On the chromosome morphology of certain amphibia. Cytologia. V. 6. P. 148. https://doi.org/10.1508/cytologia.6.148
  44. Rodrigues N., Betto‐Colliard C., Jourdan‐Pineau H., Perrin N. 2013. Within‐population polymorphism of sex‐determination systems in the common frog (Rana temporaria). J. Evol. Biol. V. 26. P. 1569. https://doi.org/10.1111/jeb.12163
  45. Rodrigues N., Vuille Y., Loman J., Perrin N. 2015. Sex-chromosome differentiation and ‘sex races’ in the common frog (Rana temporaria). Proc. R. Soc. B. V. 282. Art. ID: 20142726. https://doi.org/10.1098/rspb.2014.2726
  46. Rückert J. 1892. Zur Entwickelungsgeschichte des Ovarialeies bei Selachiern. Anat. Anz. V. 7. P. 107.
  47. Ruthsatz K., Bartels F., Stützer D., Eterovick P. C. 2022. Timing of parental breeding shapes sensitivity to nitrate pollution in the common frog Rana temporaria. J. Therm. Biol. V. 108. Art. ID: 103296. https://doi.org/10.1016/j.jtherbio.2022.103296
  48. Schempp W., Schmid M. 1981. Chromosome banding in amphibia: VI. BrdU-replication patterns in Anura and demonstration of XX/XY sex chromosomes in Rana esculenta. Chromosoma. V. 83. P. 697. https://doi.org/10.1007/BF00328528
  49. Schmid M. 1978. Chromosome banding in Amphibia: I. Constitutive heterochromatin and nucleolus organizer regions in Bufo and Hyla. Chromosoma. V. 66. P. 361. https://doi.org/10.1007/BF00328536
  50. Schmid M. 1980. Chromosome banding in amphibia: IV. Differentiation of GC- and AT-rich chromosome regions in Anura. Chromosoma. V. 77. P. 83. https://doi.org/10.1007/BF00292043
  51. Schmid M., Haaf T., Geile B., Sims S. 1983. Chromosome banding in Amphibia: VIII. An unusual XY/XX-sex chromosome system in Gastrotheca riobambae (Anura, Hylidae). Chromosoma. V. 88. P. 69. https://doi.org/10.1007/BF00329505
  52. Schmid M., Steinlein C., Bogart J. P., Feichtinger W., León P., La Marca E., Diaz L. M., Sanz A., Chen S. H., Hedges S. B. 2010. The chromosomes of terraranan frogs. Insights into vertebrate cytogenetics. Cytogen. Genome Res. V. 130. P. 1. https://doi.org/10.1159/000301339
  53. Schmid M., Steinlein C. 2016. Chromosome banding in Amphibia. XXXIV. Intrachromosomal telomeric DNA sequences in Anura. Cytogenet. Genome Res. V. 148(2—3). P. 211—226. https://doi.org/10.1159/000446298
  54. Schmid M., Steinlein C., Haaf T. 2003. Chromosome banding in Amphibia. Cytogen. Genome Res. V. 101. P. 54. https://doi.org/10.1159/000073419
  55. Schultze O. 1887. Untersuchungen über die Reifung und Befruchtung des Amphibieneies. Z. Wiss. Zool. V. 45. P. 177.
  56. Schweizer D. 1980. Simultaneous fluorescent staining of R bands and specific heterochromatic regions (DA-DAPI bands) in human chromosomes. Cytogen. Genome Res. V. 27. P. 190. https://doi.org/10.1159/000131482
  57. Session A. M., Uno Y., Kwon T., Chapman J. A., Toyoda A., Takahashi S., Fukui A., Hikosaka A., Suzuki, A., Kondo M., Van Heeringen S. J., Quigley I., Heinz S., Ogino H., Ochi H. et al. 2016. Genome evolution in the allotetraploid frog Xenopus laevis. Nature. V. 538. P. 336. https://doi.org/10.1038/nature19840
  58. Skorinov D. V., Mizhareva P. S., Pasynkova R. A., Litvinchuk S. N. 2024. What is the true karyotype of Bufotes latastii (Amphibia, Anura, Bufonidae)? Russ. Herpetology. V. 31. P. 265. https://doi.org/10.30906/1026-2296-2024-31-5-265-274
  59. Spasić-Bošković O., Tanić N., Blagojević J., Vujošević M. 1997. Comparative cytogenetic analysis of European brown frogs: Rana temporaria, R. dalmatina and R. graeca. Caryologia. V. 50. P. 139. https://doi.org/10.1080/00087114.1997.10797393
  60. Stohler R. 1928. Cytologische Untersuchungen an den Keimdrüsen mitteleuropäischer Kröten (Bufo viridis Laur., B. calamita Laur., B. vulgaris Laur.). Zeits. Zellfors. Mikroskop. Anat. V. 7. P. 400.
  61. Streicher J. W., Wellcome Sanger Institute Tree of Life programme, Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective, Tree of Life Core Informatics collective, Darwin Tree of Life Consortium. 2021. The genome sequence of the common frog Rana temporaria Linnaeus 1758. Wellcome Open Res. V. 6. P. 286. https://doi.org/10.12688/wellcomeopenres.17296.1
  62. Sumner A. T. 1972. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. V. 75. P. 304. https://doi.org/10.1016/0014-4827(72)90558-7
  63. Sun Y. B., Xiong Z. J., Xiang X. Y., Liu S. P., Zhou W. W., Tu X. L., Zhong L., Wangh L., Wua D. D., Zhang B. L., Zhua, C.L., Yang M. M., Chen H. M., Li F., Zhou L. et al. 2015. Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes. Proc. Natl. Acad. Sci. USA. V. 112. P. E1257. https://doi.org/10.1073/pnas.1501764112
  64. Sun Y. B., Zhang Y., Wang K. 2020. Perspectives on studying molecular adaptations of amphibians in the genomic era. Zoological Res. V. 41. P. 351. https://doi.org/10.24272/j.issn.2095-8137.2020.046
  65. Supaprom T., Baimai V. 2005. Characterization of C-banded mitotic chromosomes in four species of anuran amphibians from Thailand. Amphibia–Reptilia. V. 26. P. 367.
  66. Tagarro I., Wiegant J., Raap A. K., Gonzalez-Aguilera J.J., Fernandez-Peralta A.M. 1994. Assignment of human satellite 1 DNA as revealed by fluorescent in situ hybridization with oligonucleotides. Hum. Genet. V. 93. P. 125. https://doi.org/10.1007/BF00210595
  67. Ullerich F. H. 1967. Weitere Untersuchungen über Chromosomenverhältnisse und DNS-Gehalt bei Anuren (Amphibia). Chromosoma. V. 21. P. 345.
  68. Vitelli L., Batistoni R., Andronico F., Nardi I., Barsacchi-Pilone G. 1982. Chromosomal localization of 18S + 28S and 5S ribosomal RNA genes in evolutionarily diverse anuran amphibians. Chromosoma. V. 84. P. 475. https://doi.org/10.1007/BF00292849
  69. Voitovich A. M., Yeliseeva K. G., Afonin V. Y., Novitsky R. V., Kazhura Y. I. 2006. B-Chromosomes in populations of Rana temporaria (Amphibia: Anura) from Belarus. Acta Zool. Bulg. V. 58. P. 109.
  70. Wickbom T. 1945. Cytological studies on Dipnoi, Urodela, Anura, and Emys. Hereditas (London, U. K.). V. 31. P. 241.
  71. Witschi E. 1922. Vererbung und Zytologie des Geschlechts nach Untersuchungen an Fröschen. Zeitschrift Für Induktive Abstammungs- Und Vererbungslehre. V. 29. P. 31. https://doi.org/10.1007/bf01958450
  72. Zipper H. 2004. Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Res. V. 32. Art. ID: e103. https://doi.org/10.1093/nar/gnh101

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Хромосомы травяной лягушки R. Temporaria: а — метафазная пластинка после окрашивания красителем Гимза; б — кариограмма; хромосомы, несущие ЯОР, показаны внизу на врезке; в — идиограмма хромосом травяной лягушки. Масштабная линейка (а, б): 10 мкм.

Скачать (227KB)
3. Рис. 2. Дифференциальное окрашивание хромосом: а — С-диски; б — окрашивание DAPI; в — окрашивание CMA3; г — окрашивание SYBR Green. Масштабная линейка: 10 мкм.

Скачать (368KB)
4. Рис. 3. Метафазная пластинка после использования метода FISH: а — с зондом к 5S рДНК (зеленый); б — с зондом к повтору S1A (красный). Масштабная линейка: 5 мкм.

Скачать (153KB)

© Российская академия наук, 2025