Dwarf Dolly Varden Salvelinus malma (Salmonidae) from Mountain Lakes of the Kamchatka Subnival Belt
- Autores: Esin E.V.1, Medvedev D.A.1, Korostelev N.B.1, Markevich G.N.1
-
Afiliações:
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences
- Edição: Volume 64, Nº 3 (2024)
- Páginas: 321-328
- Seção: Articles
- URL: https://medjrf.com/0042-8752/article/view/650308
- DOI: https://doi.org/10.31857/S0042875224030064
- EDN: https://elibrary.ru/FNPJEG
- ID: 650308
Citar
Resumo
Charrs of the genus Salvelinus (Salmonidae) exhibit diverse patterns of heterochrony throughout their ontogeny, resulting in contrasting intraspecific phenotypic variation. This study focuses on isolated populations of Dolly Varden charr, Salvelinus malma, inhabiting cold-water lakes within the subnival belt on the Kamchatka Peninsula. Our study reveals a previously undescribed trend towards paedomorphosis in these populations. Specialization is associated with inhibition of somatic growth compared to the widely distributed migratory (anadromous and river-lake) Dolly Varden from open water systems. Juvenile charrs from landlocked lakes differ in relatively high muscle fat content. Rates of sexual maturation and morphological differentiation remain similar to those of migratory populations. Paedomorphic trends in skull structure are insignificant and the numbers of meristic serial elements do not decrease. Charrs from landlocked mountain lakes grow to a maximum length of 20 cm reaching an age of eight to nine years, while the median age of spawners is 6.2 years. Migratory charrs have the same lifespan, but spawners are 1.6–2.0 times larger. Dwarfism tends to evolve over a small number of generations, as similar phenotypes have been described in populations from the lakes originated more than 12,000 and 400 years ago.
Palavras-chave
Texto integral

Sobre autores
E. Esin
Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences
Autor responsável pela correspondência
Email: evgesin@gmail.com
Rússia, Moscow
D. Medvedev
Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences
Email: evgesin@gmail.com
Rússia, Moscow
N. Korostelev
Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences
Email: evgesin@gmail.com
Rússia, Moscow
G. Markevich
Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences
Email: evgesin@gmail.com
Rússia, Moscow
Bibliografia
- Глубоковский М.К. 1995. Эволюционная биология лососевых рыб. М.: Наука, 343 с.
- Есин Е.В. 2015. Ручьевая мальма Salvelinus malma полуострова Камчатка // Вопр. ихтиологии. Т. 55. № 2. С. 180–195. https://doi.org/10.7868/S0042875215020083
- Куренков И.И. 2005. Зоопланктон озер Камчатки. Петропавловск-Камчатский: Изд-во КамчатНИРО, 178 с.
- Лапин Ю.Е., Юровицкий Ю.Г. 1959. О внутривидовых закономерностях созревания и динамики плодовитости у рыб // Журн. общ. биологии. Т. 20. № 6. С. 439–446.
- Мурза И.Г., Христофоров О.Л. 1991. Определение степени зрелости гонад и прогнозирование возраста достижения половой зрелости у атлантического лосося и кумжи. Л.: Изд-во ГосНИОРХ, 102 с.
- Озернюк Н.Д. 2000. Биоэнергетика онтогенеза. М.: Изд-во МГУ, 259 с.
- Певзнер М.М. 2015. Голоценовый вулканизм Срединного хребта Камчатки. М.: ГЕОС, 252 с.
- Пичугин М.Ю., Сидоров Л.К., Гриценко О.Ф. 2006. О ручьевых гольцах южных Курильских островов и возможном механизме образования карликовых форм мальмы Salvelinus malma curilus // Вопр. ихтиологии. Т. 46. № 2. С. 224–239.
- Савваитова К.А. 1989. Арктические гольцы (структура популяционных систем, перспективы хозяйственного использования). М.: Агропромиздат, 224 с.
- Черешнев И.А., Волобуев В.В., Шестаков А.В., Фролов С.В. 2002. Лососевидные рыбы Северо-Востока России. Владивосток: Дальнаука, 496 с.
- Чурова М.В., Мещерякова О.В., Немова Н.Н., Шатуновский М.И. 2010. Соотношение роста и некоторых биохимических показателей рыб на примере микижи Parasalmo mykiss Walb. // Изв. РАН. Сер. биол. № 3. С. 289–299.
- Шишкин М.А. 2016. Эволюция онтогенеза и природа гетерохроний // Палеонтол. журн. № 2. С. 11–25. https://doi.org/10.7868/S0031031X16020082
- Шкиль Ф.Н., Лазебный О.Е., Капитанова Д.В. и др. 2015. Онтогенетические механизмы взрывной морфологической дивергенции пучка видов крупных африканских усачей р. Labeobarbus (Cyprinidae; Teleostei) оз. Тана, Эфиопия // Онтогенез. Т. 46. № 5. С. 346–359. https://doi.org/10.7868/S0475145015050080
- Alberch P., Gould S.J., Oster G.F., Wake D.B. 1979. Size and shape in ontogeny and phylogeny // Paleobiology. V. 5. № 3. P. 296–317. https://doi.org/10.1017/S0094837300006588
- Bartha T., Dewil E., Rudas P. et al. 1994. Kinetic parameters of plasma thyroid hormone and thyroid hormone receptors in a dwarf and control line of chicken // Gen. Comp. Endocrinol. V. 96. № 1. P. 140–148. https://doi.org/10.1006/gcen.1994.1166
- Boegheim I.J.M., Leegwater P.A.J., van Lith H.A., Back W. 2017. Current insights into the molecular genetic basis of dwarfism in livestock // Vet. J. V. 224. P. 64–75. https://doi.org/10.1016/j.tvjl.2017.05.014
- De Beer G.R. 1958. Embryos and ancestors. Oxford: Clarendon Press, 197 p.
- Esin E.V., Markevich G.N., Shkil F.N. 2020. Rapid miniaturization of Salvelinus fish as an adaptation to the volcanic impact // Hydrobiologia. V. 847. № 13. P. 2947–2962. https://doi.org/10.1007/s10750-020-04296-w
- Esin E.V., Markevich G.N., Melnik N.O. et al. 2021. Ambient temperature as a factor contributing to the developmental divergence in sympatric salmonids // PLoS One. V. 16. № 10. Article e0258536. https://doi.org/10.1371/journal.pone.0258536
- Esin E.V., Shulgina E.V., Shkil F.N. 2023. Rapid hyperthyroidism-induced adaptation of salmonid fish in response to environmental pollution // J. Evol. Biol. V. 36. № 10. P. 1471–1483. https://doi.org/10.1111/JEB.14220
- Folch J., Lees M., Sloane Stanley G.H. 1957. A simple method for the isolation and purification of total lipides from animal tissues // J. Biol. Chem. V. 226. № 1. P. 497–509. https://doi.org/10.1016/S0021-9258(18)64849-5
- Gordeeva N.V., Alekseyev S.S., Matveev A.N., Samusenok V.P. 2015. Parallel evolutionary divergence in Arctic charr Salvelinus alpinus (L.) complex from Transbaikalia: variation in differentiation degree and segregation of genetic diversity among sympatric forms // Can. J. Fish. Aquat. Sci. V. 72. № 1. P. 96–115. https://doi.org/10.1139/cjfas-2014-0014
- Gould S.J. 2002. The structure of evolutionary theory. Cambridge: Belknap Press, 1433 p. https://doi.org/10.2307/j.ctvjsf433
- Grainger E.H. 1953. On the age, growth, migration, reproductive potential and feeding habitats of the Arctic char (Salvelinus alpinus) of Frobisher bay, Baffin Island // J. Fish. Res. Board Can. V. 10. № 6. P. 326–370. https://doi.org/10.1139/f53-023
- Guderley H. 2004. Metabolic responses to low temperature in fish muscle // Biol. Rev. V. 79. № 2. P. 409–427. https://doi.org/10.1017/S1464793103006328
- Hall В.K. 1998. Evolutionary developmental biology. Dordrecht: Springer, 491 р. https://doi.org/10.1007/978-94-011-3961-8
- Kaneshige M., Suzuki H., Kaneshige K. et al. 2001. A targeted dominant negative mutation of the thyroid hormone α1 receptor causes increased mortality, infertility, and dwarfism in mice // PNAS. V. 98. № 26. P. 15095–15100. https://doi.org/10.1073/pnas.261565798
- Koseki Y. 2004. Reproductive characteristics of precocious male parr in salmonids: Morphology, physiology, and behavior // Eur. J. For. Res. V. 7. № 2. P. 87–108.
- Markevich G.N., Pavlova N.S., Kapitanova D.V., Esin E.V. 2023. Bone calcification rate as a factor of craniofacial transformations in salmonid fish: insights from an experiment with hormonal treatment of calcium metabolism // Evol. Dev. V. 25. № 4–5. P. 274–288. https://doi.org/10.1111/ede.12453
- McKinney M.L., McNamara K.J. 1991. Heterochrony. The evolution of ontogeny. N.Y.: Springer, 437 p. https://doi.org/10.1007/978-1-4757-0773-1
- McNamara K.J. 1986. The role of heterochrony in the evolution of Cambrian trilobites // Biol. Rev. V. 61. № 2. P. 121–156. https://doi.org/10.1111/j.1469-185X.1986.tb00464.x
- Piras P., Salvi D., Ferrara G. et al. 2011. The role of post-natal ontogeny in the evolution of phenotypic diversity in Podarcis lizards // J. Evol. Biol. V. 24. № 12. P. 2705–2720. https://doi.org/10.1111/j.1420-9101.2011.02396.x
- Reilly S.M., Wiley E.O., Meinhardt D.J. 1997. An integrative approach to heterochrony: the distinction between interspecific and intraspecific phenomena // Biol. J. Linn. Soc. V. 60. № 1. P. 119–143. https://doi.org/10.1111/j.1095-8312.1997.tb01487.x
- Smith K.K. 2001. Heterochrony revisited: the evolution of developmental sequences // Ibid. V. 73. № 2. P. 169–186. https://doi.org/10.1111/j.1095-8312.2001.tb01355.x
- Voskoboinikova O.S., Kudryavtseva O.Y., Orlov A.M. et al. 2020. Relationships and evolution of lumpsuckers of the family Cyclopteridae (Cottoidei) // J. Ichthyol. V. 60. № 2. P. 154–181. https://doi.org/10.1134/S0032945220020204
Arquivos suplementares
