Locomotor Activity of the Intact and Visually Deprived Senegal Bichir Polypterus senegalus (Cladistia) at Different Water Temperatures
- 作者: Kasumyan A.O.1, Zdanovich V.V.1, Sataeva V.V.1
-
隶属关系:
- Lomonosov Moscow State University
- 期: 卷 64, 编号 3 (2024)
- 页面: 354-362
- 栏目: Articles
- URL: https://medjrf.com/0042-8752/article/view/650311
- DOI: https://doi.org/10.31857/S0042875224030097
- EDN: https://elibrary.ru/FNHMMH
- ID: 650311
如何引用文章
详细
For the first time, the locomotor activity of the intact and visually deprived Senegal bichir Polypterus senegalus was assessed at different water temperatures (20, 25, 30 and 34°C). Using the open field method, it was shown that in intact fish, with increasing temperature, locomotor activity increases (most rapidly in the range of 20–25°C) and reaches a maximum at a temperature of 30°C, which can be close to the temperature optimum (or correspond to it) for the Senegal bichir. In visually deprived fish, locomotor activity is maximum at 20°C and decreases monotonically with increasing temperature; all indicators of locomotor activity (frequency of crossing test lines; time spent for the test line crossing; distance covered by the fish, swimming speed) vary in visually deprived fish weaker than in intact ones. The discovered differences in the behavior of intact and visually deprived fish indicate the presence of a functional relationship between vision and locomotor activity in evolutionarily ancient Cladistia.
全文:

作者简介
A. Kasumyan
Lomonosov Moscow State University
Email: zdanovich@mail.ru
俄罗斯联邦, Moscow
V. Zdanovich
Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: zdanovich@mail.ru
俄罗斯联邦, Moscow
V. Sataeva
Lomonosov Moscow State University
Email: zdanovich@mail.ru
俄罗斯联邦, Moscow
参考
- Белокопытин Ю.С. 1993. Энергетический обмен и двигательная активность морских рыб: Автореф. дис. ... докт. биол. наук. Севастополь: ИнБЮМ НАНУ, 55 с.
- Девицина Г.В., Марусов Е.А. 2007. Взаимодействие хемосенсорных систем и пищевое поведение рыб // Успехи соврем. биологии. Т. 127. № 4. С. 327–395.
- Зданович В.В. 2017. Поведение и двигательная активность интактного и сенсорно депривированного тетрагоноптеруса Hemigramus caudovitatus в термоградиентном поле // Тез. докл. VI Всерос. конф. по поведению животных. М.: Т-во науч. изд. КМК. С. 57.
- Зданович В.В., Пушкарь В.Я. 2004. Влияние потребления пищи на интенсивность дыхания и двигательную активность молоди стерляди Acipenser ruthenus // Вопр. ихтиологии. Т. 44. № 4. С. 567–569.
- Касумян А.О., Марусов Е.А. 2007. Хеморецепция у хронически аносмированных рыб: феномен компенсаторного развития вкусовой системы // Там же. Т. 47. № 5. С. 684–693.
- Касумян А.О., Павлов Д.С. 2018. Стайное поведение рыб. М.: Т-во науч. изд. КМК, 273 с.
- Павлов Д.С. 1979. Биологические основы управления поведением рыб в потоке воды. М.: Наука, 319 с.
- Смирнов А.К., Смирнова Е.С. 2020. Влияние температуры на двигательную активность и плавательную способность молоди плотвы Rutilus rutilus (Cyprinidae) // Вопр. ихтиологии. Т. 60. № 2. С. 219–228. https://doi.org/10.31857/S0042875220020228
- Alsop D.H., Kieffer J.D., Wood C.M. 1999. The effects of temperature and swimming speed on instantaneous fuel use and nitrogenous waste excretion of the Nile tilapia // Physiol. Biochem. Zool. V. 72. № 4. P. 474–483. https://doi.org/10.1086/316686
- Andrzejaczek S., Gleiss A.C., Pattiaratchi C.B., Meekan M.G. 2019. Patterns and drivers of vertical movements of the large fishes of the epipelagic // Rev. Fish Biol. Fish. V. 29. № 2. P. 335–354. https://doi.org/10.1007/s11160-019-09555-1
- Arnoult J. 1964. Comportement et reproduction en captivité de Polypterus senegalus Cuvier // Acta Zool. V. 46. № 3. P. 191–199. https://doi.org/10.1111/j.1463-6395.1964.tb00719.x
- Bartsch P., Gemballa S., Piotrowski T. 1997. The embryonic and larval development of Polypterus senegalus Cuvier, 1829: its staging with reference to external and skeletal features, behaviour and locomotory habits // Ibid. V. 78. № 4. P. 309–328. https://doi.org/10.1111/j.1463-6395.1997.tb01014.x
- Beamish F.W.H. 1978. Swimming capacity // Fish Physiol. V. 7. P. 101–187. https://doi.org/10.1016/S1546-5098(08)60164-8
- Braithwaite V.A. 1998. Spatial memory, landmark use and orientation in fish // Spatial representations in animals. Oxford: Oxford Univ. Press. P. 86–102.
- Britz R., Bartsch P. 1998. On the reproduction and early development of Erpetoichthys calabaricus, Polypterus senegalus, and Polypterus ornatipinnis (Actinopterygii: Polypteridae) // Ichthyol. Explor. Freshw. V. 9. № 4. P. 325–334.
- Childs A.-R., Cowley P.D., Næsje T.F. et al. 2008. Do environmental factors influence the movement of estuarine fish? A case study using acoustic telemetry // Estuar. Coast. Shelf Sci. V. 78. № 1. P. 227–236. https://doi.org/10.1016/j.ecss.2007.12.003
- Claireaux G., Couturier C., Groison A.-L. 2006. Effect of temperature on maximum swimming speed and cost of transport in juvenile European sea bass (Dicentrarchus labrax) // J. Exp. Biol. V. 209. P. 3420–3428. https://doi.org/10.1242/jeb.02346
- Cooke S.J., Bergman J.N., Twardek W.M. et al. 2022. The movement ecology of fishes // J. Fish Biol. V. 101. № 4. P. 756–779. https://doi.org/10.1111/jfb.15153
- Edeline E., Dufour S., Elie P. 2009. Proximate and ultimate control of eel continental dispersal // Spawning migration of the European eel. Dordrecht: Springer. P. 433–461. https://doi.org/10.1007/978-1-4020-9095-0_18
- Forsythe P.S., Scribner K.T., Crossman J.A. et al. 2012. Environmental and lunar cues are predictive of the timing of river entry and spawning-site arrival in lake sturgeon Acipenser fulvescens // J. Fish Biol. V. 81. № 1. P. 35–53. https://doi.org/10.1111/j.1095-8649.2012.03308.x
- Froese R., Pauly D. (eds.). 2023. FishBase. World Wide Web electronic publication (www.fishbase.org. Version 06/2023).
- García-Vega A., Ruiz-Legazpi J., Fuentes-Pérez J.F. et al. 2023. Effect of thermo-velocity barriers on fish: influence of water temperature, flow velocity and body size on the volitional swimming capacity of northern straight-mouth nase (Pseudochondrostoma duriense) // J. Fish Biol. V. 102. № 3. P. 689–706. https://doi.org/10.1111/jfb.15310
- Goniea T.M., Keefer M.L., Bjornn T.C. et al. 2006. Behavioral thermoregulation and slowed migration by adult fall chinook salmon in response to high Columbia River water temperatures // Trans. Am. Fish. Soc. V. 135. № 2. P. 408–419. https://doi.org/10.1577/T04-113.1
- Hainer J., Lutek K., Maki H., Standen E.M. 2023. Sensorimotor control of swimming Polypterus senegalus is preserved during sensory deprivation conditions across altered environments // J. Exp. Biol. V. 226. № 9. Article jeb245192. https://doi.org/10.1242/jeb.245192
- Heuer R.M., Stieglitz J.D., Pasparakis C. et al. 2021. The effects of temperature acclimation on swimming performance in the pelagic mahi-mahi (Coryphaena hippurus) // Front. Mar. Sci. V. 8. Article 654276. https://doi.org/10.3389/fmars.2021.654276
- Holyoak M., Casagrandi R., Nathan R. et al. 2008. Trends and missing parts in the study of movement ecology // PNAS. V. 105. № 49. Р. 19060–19065. https://doi.org/10.1073/pnas.0800483105
- Jain K.E., Farrell A.P. 2003. Influence of seasonal temperature on the repeat swimming performance of rainbow trout Oncorhynchus mykiss // J. Exp. Biol. V. 206. № 20. P. 3569–3579. https://doi.org/10.1242/jeb.00588
- Kent M., Ojanguren A.F. 2015. The effect of water temperature on routine swimming behaviour of new born guppies (Poecilia reticulata) // Biol. Open. V. 4. № 4. P. 547–552. https://doi.org/10.1242/bio.20149829
- Lee C.G., Farrell A.P., Lotto A. et al. 2003. The effect of temperature on swimming performance and oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon stocks // J. Exp. Biol. V. 206. № 18. P. 3239–3251. https://doi.org/10.1242/jeb.00547
- Linløkken A.N., Bergman E., Greenberg L. 2010. Effect of temperature and roach Rutilus rutilus group size on swimming speed and prey capture rate of perch Perca fluviatilis and R. rutilus // J. Fish Biol. V. 76. № 4. P. 900–912. https://doi.org/10.1111/j.1095-8649.2010.02545.x
- Lutek K., Standen E.M. 2021. Increasing viscosity helps explain locomotor control in swimming Polypterus senegalus // Integr. Org. Biol. V. 3. № 1. Article obab024. https://doi.org/10.1093/iob/obab024
- Mandal P., Cai L., Tu Z. et al. 2016. Effects of acute temperature change on the metabolism and swimming ability of juvenile sterlet sturgeon (Acipenser ruthenus, Linnaeus 1758) // J. Appl. Ichthyol. V. 32. № 2. P. 267–271. https://doi.org/10.1111/jai.13033
- Mazeroll A.I., Montgomery W.L. 1998. Daily migrations of a coral reef fish in the Red Sea (Gulf of Aqaba, Israel): initiation and orientation // Copeia. V. 1998. № 4. P. 893–905. https://doi.org/10.2307/1447336
- Moritz T., Britz R. 2019. Revision of the extant Polypteridae (Actinopterygii: Cladistia) // Ichthyol. Explor. Freshw. V. 29. № 2. P. 97–192. https://doi.org/10.23788/IEF-1094
- Nakayama D., Doering-Arjes P., Linzmaier S. et al. 2018. Fine-scale movement ecology of a freshwater top predator, Eurasian perch (Perca fluviatilis), in response to the abiotic environment over the course of a year // Ecol. Freshw. Fish. V. 27. № 3. P. 798–812. https://doi.org/10.1111/eff.12393
- New J.G., Fewkes L.A., Khan A.N. 2001. Strike feeding behavior in the muskellunge, Esox masquinongy: contributions of the lateral line and visual sensory systems // J. Exp. Biol. V. 204. № 6. P. 1207–1221. https://doi.org/10.1242/jeb.204.6.1207
- Odling-Smee L., Braithwaite V. 2003. The influence of habitat stability on landmark use during spatial learning in three-spine stickleback // Anim. Behav. V. 65. № 4. P. 701–707. https://doi.org/10.1006/anbe.2003.2082
- Pang X., Cao Z.-D., Fu S.-J. 2011. The effects of temperature on metabolic interaction between digestion and locomotion in juveniles of three cyprinid fish (Carassius auratus, Cyprinus carpio and Spinibarbus sinensis) // Comp. Biochem. Physiol. Pt. A. Mol. Integr. Physiol. V. 159. № 3. P. 253–260. https://doi.org/10.1016/j.cbpa.2011.03.013
- Peck M.A., Buckley L.J., Bengtson D.A. 2006. Effects of temperature and body size on the swimming speed of larval and juvenile Atlantic cod (Gadus morhua): implications for individual-based modelling // Environ. Biol. Fish. V. 75. № 4. P. 419–429. https://doi.org/10.1007/s10641-006-0031-3
- Pekkola W. 1919. Notes on the habits, breeding and food of some White Nile fish // Sudan Notes Rec. V. 2. № 2. P. 112–121. https://www.jstor.org/stable/41715836
- Pfeiffer W. 1968. Retina und Retinomotorik der Dipnoi und Brachiopterygii // Z. Zellforsch. Mikrosk. Anat. V. 89. № 1. P. 62–72. https://doi.org/10.1007/BF00332652
- Reese E.S. 1989. Orientation behaviour of butterflyfishes (family Chaetodontidae) on coral reefs: spatial learning of route specific landmarks and cognitive maps // Environ. Biol. Fish. V. 25. № 1–3. P. 79–86. https://doi.org/10.1007/BF00002202
- Reynolds W.W. 1977. Temperature as a proximate factor in orientation behavior // J. Fish. Res. Board Can. V. 34. № 5. P. 734–739. https://doi.org/10.1139/f77-114
- Sataeva V.V., Kasumyan A.O. 2022. Orosensory preferences and feeding behavior of Cladistia: a comparison of gray bichir Polypterus senegalus and saddle bichir P. endlicherii (Polypteridae) // J. Ichthyol. V. 62. № 7. P. 1501–1520. https://doi.org/10.1134/S003294522204021X
- Schlaff A.M., Heupel M.R., Simpfendorfer C.A. 2014. Influence of environmental factors on shark and ray movement, behaviour and habitat use: a review // Rev. Fish Biol. Fish. V. 24. № 4. P. 1089–1103. https://doi.org/10.1007/s11160-014-9364-8
- Smith R.J.F. 1985. The control of fish migration. Heidelberg: Springer-Verlag, 243 p. https://doi.org/10.1007/978-3-642-82348-0
- Standen E.M., Hinch S.G., Rand P.S. 2004. Influence of river speed on path selection by migrating adult sockeye salmon (Oncorhynchus nerka) // Can. J. Fish. Aquat. Sci. V. 61. № 6. P. 905–912. https://doi.org/10.1139/f04-035
- Welsch S.A., Liller H.L. 2013. Environmental correlates of upstream migration of yellow-phase American eels in the Potomac River drainage // Trans. Am. Fish. Soc. V. 142. № 2. P. 483–491. https://doi.org/10.1080/00028487.2012.754788
- Znotinas K.R., Standen E.M. 2019. Aerial and aquatic visual acuity of the grey bichir Polypterus senegalus, as estimated by optokinetic response // J. Fish Biol. V. 95. № 1. P. 263–273. https://doi.org/10.1111/jfb.13724
补充文件
