Origin, Phylogeny, and Taxonomy of Lenoks of the Genus Brachymystax (Salmonidae): Available Data, Their Interpretation, and Unresolved Problems

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The reproductive and phylogenetic relationships of lenoks of the genus Brachymystax are considered based on analysis of 30 allozyme loci and two fragments (411 and 987 base pairs) of the mitochondrial DNA control region. The presence of three phylogenetic lenok groups, the blunt-snouted and sharp-snouted groups from Russia and neighboring countries and the Qinling group from China and South Korea, has been confirmed. It is assumed that the center of origin of the genus Brachymystax was Primorye and the blunt-snouted lenok from this region is closest to the ancestral form. Modern assumptions on the taxonomic status of different forms of lenok are contradictory both in the number of species (from one to five) and in their composition. The identification of two or three species in the genus Brachymystax is most reasonable. The main problems that should be solved to clarify the phylogeny and taxonomy of representatives of this genus are indicated.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Osinov

Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: a-osinov@yandex.ru
Ресей, Moscow

Әдебиет тізімі

  1. Алексеев С.С., Осинов А.Г. 2006. Тупорылые ленки (род Brachymystax: Salmoniformes, Salmonidae) бассейна Оби: новые данные по морфологии и аллозимной изменчивости // Вопр. ихтиологии. Т. 46. № 4. С. 478–494.
  2. Алексеев С.С., Мина М.В., Кондрашов А.С. 1986. Параллельные клины как результат встречного расселения особей и смещения признаков. Анализ ситуации в роде Brachymystax (Salmoniformes, Salmonidae) // Зоол. журн. Т. 65. № 2. С. 227–234.
  3. Алексеев С.С., Кириллов А.Ф., Самусенок В.П. 2003. Распространение и морфология острорылых и тупорылых ленков рода Brachymystax (Salmonidae) Восточной Сибири // Вопр. ихтиологии. Т. 43. № 3. С. 311–333.
  4. Артеменко Т.В., Сорокин А.П. 2009. Условия формирования и эволюция бассейна Амура // География и природ. ресурсы. № 4. С. 106–111.
  5. Берг Л.С. 1948. Рыбы пресных вод СССР и сопредельных стран. Ч. 1. М.; Л.: Изд-во АН СССР, 467 с.
  6. Беседнов Л.Н., Кучеров А.Н. 1972. К систематическому положению ленков рода род Brachymystax р. Иман. Зоологические проблемы Сибири // Матер. IV совещ. зоологов Сибири. Новосибирск: Наука. С. 220–221.
  7. Богуцкая Н.Г., Насека А.М. 2004. Каталог бесчелюстных и рыб пресных и солоноватых вод России с номенклатурными и таксономическими комментариями. М.: Т-во науч. изд. КМК, 389 с.
  8. Гросвальд М.Г. 2009. Оледенение Русского Севера и Северо-Востока в эпоху последнего великого похолодания // Материалы гляциологических исследований. Вып. 106. 152 с.
  9. Кифа М.И. 1976. Морфология двух форм ленка (род Brachymystax, сем. Salmonidae) и их систематическое положение // Зоогеография и систематика рыб. Л.: Изд-во ЗИН АН СССР. С. 142–156.
  10. Линдберг Г.У. 1972. Крупные колебания уровня океана в четвертичный период. Биогеографические обоснования гипотезы. Л.: Наука, 548 с.
  11. Мина М.В. 1986. Микроэволюция рыб: эволюционные аспекты фенетического разнообразия. М.: Наука, 207 с.
  12. Мина М.В. 1992. Вероятное толкование в роде Brachymystax (Salmonidae, Pisces): множественное гибридное видообразование? // Зоол. журн. Т. 71. № 4. С. 29–33.
  13. Митрофанов В.П. 1959. К систематике ленка из озера Марка-Куль // Сб. работ по ихтиологии и гидробиологии. Вып. 2. Алма-Ата: Изд-во ин-та зоологии АН КазССР. С. 267–275.
  14. Осинов А.Г. 1991. Генетическая дивергенция и филогенетические взаимоотношения ленков рода Brachymystax и тайменей родов Hucho и Parahucho // Генетика. Т. 27. № 12. С. 2127–2136.
  15. Осинов А.Г. 1993. Встречное расселение, вторичный контакт и видообразование у ленков рода Brachymystax (Salmonidae, Salmoniformes) // Там же. Т. 29. № 4. С. 654–669.
  16. Осинов А.Г., Лебедев В.С. 2004. Лососевые рыбы (Salmonidae, Salmoniformes): положение в надотряде Protacanthopterygii, основные этапы эволюционной истории, молекулярные датировки // Вопр. ихтиологии. Т. 44. № 6. С. 738–765.
  17. Осинов А.Г., Ильин И.И., Алексеев С.С. 1990. Формы ленка рода Brachymystax в свете данных популяционно-генетического анализа // Зоол. журн. Т. 69. № 8. С. 76–90.
  18. Сорокин А.П., Махинов А.Н., Воронов Б.А. и др. 2010. Эволюция бассейна Амура в мезозое-кайнозое и ее отражение в современной динамике рельефа // Вестн. ДВО РАН. № 3. С. 72–80.
  19. Сычевская Е.К. 1986. Пресноводная палеогеновая ихтиофауна СССР и Монголии. М.: Наука, 157 с.
  20. Шедько С.В. 2001. Список круглоротых и рыб пресных вод побережья Приморья // Чтения памяти В.Я. Леванидова. Вып. 1. С. 229–249.
  21. Шедько С.В. 2012. Филогенетические связи ленков рода Brachymystax (Salmonidae, Salmoniformes) и особенности их видообразования. Saarbrucken: LAMBERT Acad. Publ., 206 c.
  22. Шедько С.В., Шедько М.Б. 2003. Новые данные по пресноводной ихтиофауне юга Дальнего Востока России // Чтения памяти В.Я. Леванидова. Вып. 2. С. 319–336.
  23. Шедько С.В., Мирошниченко И.Л., Немкова Г.А. 2013. Филогения лососевых рыб (Salmoniformes: Salmonidae) и ее молекулярная датировка: анализ мтДНК-данных // Генетика. Т. 49. № 6. С. 718–734. https://doi.org/10.7868/S0016675813060118
  24. Alexandrou M.A., Swartz B.A., Matzke N.J., Oakley T.H. 2013. Genome duplication and multiple evolutionary origins of complex migratory behavior in Salmonidae // Mol. Phylogenet. Evol. V. 69. № 3. P. 514–523. https://doi.org/10.1016/j.ympev.2013.07.026
  25. Balakirev E.S., Romanov N.S., Ayala F.J. 2016. Complete mitochondrial genome of blunt-snouted lenok Brachymystax tumensis (Salmoniformes, Salmonidae) // Mitochondrial DNA. V. 27. № 2. P. 882–883. https://doi.org/10.3109/19401736.2014.919487
  26. Bandelt H.-J., Forster P., Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies // Mol. Biol. Evol. V. 16. № 1. P. 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
  27. Bogutskaya N.G., Naseka A.M., Shedko S.V. et al. 2008. The fishes of Amur River: updated check-list and zoogeography // Ichthyol. Explor. Freshw V. 19. № 4. P. 301–366.
  28. Burbrink F.T., Crother B.I., Murray C.M. et al. 2022. Empirical and philosophical problems with the subspecies rank // Ecol. Evol. V. 12. № 7. Article e9069. https://doi.org/10.1002/ece3.9069
  29. Felsenstein J. 1993. PHYLIP (Phylogeny inference package) version 3.698. Washington, Seattle: Dept. Genetics, Univ. (https://phylipweb.github.io/phylip/. Version 11/2023).
  30. Fricke R., Eschmeyer W.N., van der Laan R. (eds.). 2023. Eschmeyer’s catalog of fishes: genera, species, references (http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp. Version 11/2023).
  31. Froufe E., Alekseyev S., Alexandrino P., Weiss S. 2008. The evolutionary history of sharp- and blunt-snouted lenok (Brachymystax lenok (Pallas, 1773)) and its implications for the paleo-hydrological history of Siberia // BMC Evol. Biol. V. 8. Article 40. https://doi.org/10.1186/1471-2148-8-40
  32. Guindon S., Dufayard J.-F., Lefort V. et al. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0 // Syst. Biol. V. 59. № 3. P. 307–321. https://doi.org/10.1093/sysbio/syq010
  33. Hall T. 2011. BioEdit: an important software for molecular biology // GERF Bull. Biosci. V. 2. № 1. P. 60–61.
  34. Hoang D.T, Chernomor O., von Haeseler A. et al. 2018. UFBoot2: improving the ultrafast bootstrap approximation // Mol. Biol. Evol. V. 35. № 2. P. 518–522. https://doi.org/10.1093/molbev/msx281
  35. Jang J.E., Kim J.H., Kang J.H. et al. 2017. Genetic diversity and genetic structure of the endangered Manchurian trout, Brachymystax lenok tsinlingensis, at its southern range margin: conservation implications for future restoration // Conserv. Genet. V. 18. № 5. P. 1023–1036. https://doi.org/10.1007/s10592-017-0953-7
  36. Kalyaanamoorthy S., Minh B.Q., Wong T.K.F. et al. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates // Nat. Methods. V. 14. № 6. P. 587–589. https://doi.org/10.1038/nmeth.4285
  37. Kaus A., Michalski S., Hänfling B. et al. 2019. Fish conservation in the land of steppe and sky: evolutionary significant units of threatened salmonid species in Mongolia mirror major river basins // Ecol. Evol. V. 9. № 6. P. 3416–3433. https://doi.org/10.1002/ece3.4974
  38. Kaus A., Schäffer M., Michalski S. et al. 2023. Morphological and genetic assessment of sympatric lenok species (Brachymystax spp.) in the Onon River, Mongolia // Mongol. J. Biol. Sci. V. 21. № 1. P. 3–14. https://doi.org/10.22353/mjbs.2023.21.01
  39. Ko M.-H., Choi K.-S., Han M.-S. 2021. Distribution status, habitat characteristics and extinction threat evaluation of the endangered species, Brachymystax lenok tsinlingensis (Pisces: Salmonidae) // Korean J. Ichthyol. V. 33. P. 74–83. https://doi.org/10.35399/ISK.33.2.4
  40. Kottelat M. 2006. Fishes of Mongolia. A check list of the fishes known to occur in Mongolia with comments on systematics and nomenclature. Washington: The World Bank, 103 p.
  41. Lecaudey L.A., Schliewen U.K., Osinov A.G. et al. 2018. Inferring phylogenetic structure, hybridization and divergence times within Salmoninae (Teleostei: Salmonidae) using RAD-sequencing // Mol. Phylogenet. Evol. V. 124. P. 82–99. https://doi.org/10.1016/j.ympev.2018.02.022
  42. Leigh J.W., Bryant D. 2015. PopART: full-feature software for haplotype network construction // Methods Ecol. Evol. V. 6. № 9. P. 1110–1116. https://doi.org/10.1111/2041-210X.12410
  43. Li P., Wang F., Wen S. et al. 2017. Genetic diversity and population structure of Brachymystax lenok tsinlingensis using mitochondrial DNA sequences // Mitochondrial DNA. B. V. 2. № 2. P. 408–410. https://doi.org/10.1080/23802359.2017.1347897
  44. Li S.Z. 1966. On a new subspecies of fresh-water trout, Brachymystax lenok tsinlingensis, from Taipaishan, Shensi, China // Acta Zootax. Sin. V. 3. P. 92–94.
  45. Li S.Z. 1984. Studies on the distribution of the Salmonid fishes in China // Chin. J. Zool. V. 3. P. 34–37.
  46. Liu H., Li Y., Liu X. et al. 2015. Phylogeographic structure of Brachymystax lenok tsinlingensis (Salmonidae) populations in the Qinling Mountains, Shaanxi, based on mtDNA control region // Mitochondrial DNA. V. 26. № 4. P. 532–537. https://doi.org/10.3109/19401736.2013.865168
  47. Ma B., Yin J.S., Li J.P. 2005. Comparative studies on morphology and taxonomic position of two species of lenok // Acta Zootax. Sin. V. 30. P. 257–260.
  48. Meng Y., Wang G., Xiong D. et al. 2018. Geometric morphometric analysis of the morphological variation among three lenoks of genus Brachymystax in China // Pakistan J. Zool. V. 50. № 3. P. 885–895. https://doi.org/10.17582/journal.pjz/2018.50.3.885.895
  49. Mori T. 1930. On the freshwater fishes from the Tumen River, Korea, with descriptions of new species // J. Chosen Nat. Hist. Soc. V. 11. P. 39–49.
  50. Nei M. 1987. Molecular evolutionary genetics. N.Y.: Columbia Univ. Press, 512 p. https://doi.org/10.7312/nei-92038
  51. Nguyen L.-T., Schmidt H.A., Haeseler A., Minh B.Q. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies // Mol. Biol. Evol. V. 32. № 1. P. 268–274. https://doi.org/10.1093/molbev/msu300
  52. Phillips R.B., Oakley T.H. 1997. Phylogenetic relationships among the Salmoninae based on nuclear and mitochondrial DNA sequences // Molecular systematics of fishes. London: Acad. Press. P. 145–162. https://doi.org/10.1016/B978-012417540-2/50011-7
  53. Phillips R.B., Oakley T.H., Davis E.L. 1995. Evidence supporting the paraphyly of Hucho (Salmonidae) based on ribosomal DNA restriction maps // J. Fish. Biol. V. 47. № 6. P. 956–961. https://doi.org/10.1111/j.1095-8649.1995.tb06021.x
  54. Qin S.Z., Wang S.A. 1989. Studies on the subspecies of Brachymystax lenok (Pallas), China // Salmon Fish. V. 2. P. 52–61.
  55. Rozas J, Ferrer-Mata A., Sanchez-DelBarrio J.C. et al. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets // Mol. Biol. Evol. V. 34. № 12. P. 3299–3302. https://doi.org/10.1093/molbev/msx248
  56. Shed’ko S.V., Ginatulina L.K., Parpura I.Z., Ermolenko A.V. 1996. Evolutionary and taxonomic relationships among Far-Eastern salmonid fishes inferred from mitochondrial DNA divergence // J. Fish Biol. V. 49. № 5. P. 815–829. https://doi.org/10.1111/j.1095-8649.1996.tb00081.x
  57. Si S., Wang Y., Xu G. et al. 2012. Complete mitochondrial genomes of two lenoks, Brachymystax lenok and Brachymystax lenok tsinlingensis // Mitochondrial DNA. V. 23. P. 338–340. https://doi.org/10.3109/19401736.2012.690749
  58. Swofford D.L. 2002. PAUP*. Phylogenetic analysis using parsimony (*and other methods), Version 4. Sinauer Associates, Sunderland, Massachusetts (https://paup.phylosolutions.com/. Version 11/2023).
  59. Thompson J.D., Gibson T.J., Plewniak F. et al. 1997. The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools // Nucleic Acids Res. V. 25. № 24. P. 4876–4882. https://doi.org/10.1093/nar/25.24.4876
  60. Xia Y.Z., Chen Y.-Y., Sheng Y. 2006. Phylogeographic structure of lenok (Brachymystax lenok Pallas) (Salmoninae, Salmonidae) populations in water systems of eastern China, inferred from mitochondrial DNA sequences // Zool. Stud. V. 45. № 2. P. 190–200.
  61. Xing Y.-C., Lv B.-B., Ye E.-Q. et al. 2015. Revalidation and redescription of Brachymystax tsinlingensis Li, 1966 (Salmoniformes: Salmonidae) from China // Zootaxa. V. 3962. № 1. P. 191–205. https://doi.org/10.11646/zootaxa.3962.1.12
  62. Yu J.N., Kwak M. 2015. The complete mitochondrial genome of Brachymystax lenok tsinlingensis (Salmoninae, Salmonidae) and its intraspecific variation // Gene. V. 573. № 2. P. 246–253. https://doi.org/10.1016/j.gene.2015.07.049
  63. Zhao Y., Zhang C. 2009. Threatened fishes of the world: Brachymystax lenok tsinlingensis Li, 1966 (Salmonidae) // Environ. Biol. Fish. V. 86. № 1. P. 11–12. https://doi.org/10.1007/s10641-008-933

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Map of the distribution of three forms of lenka of the genus Brachymystax: ( ) – blunt-nosed, ( ) – sharp-winged, ( )– Qinling. The lenok from the Tumen and Yalu Rivers (North Korea, China) is classified as a sharp-winged form (see the text for explanations). The sampling sites () of the sharp–winged and blunt–nosed lenkov used for allozyme analysis: 1 – Kaldzhir River, 2 – Markakol Lake, 3 – Pyzha River, 4 - Mrassu River, 5 - Bolshoy Kemchug River, 6 – Selenga River, 7 – lake. Frolikha, 8 – Kuanda River, 9 – Morkoka River, 10 – Vilyu River, 11 – Undyulung River, 12 – Khor River, 13 – rivers of the Sea of Japan basin (Samarga, Edinka, Venyukovka) are combined in the sample of Northern Primorye, 14 – Taiga River (Central Primorye).

Жүктеу (213KB)
3. Fig. 2. A dendrogram constructed by the method of joining neighbors (NJ) according to standard genetic distances (calculated from 30 allozyme loci) between populations of the sharp-winged and blunt-nosed lenkov genus Brachymystax from Russia and Mongolia. Bootstrap values are shown on the branches. To the right of the name of the population (reservoir), the mitochondrial DNA haplotype identified in it is indicated . See the location of reservoirs in Fig. 1. Scale: genetic distances.

Жүктеу (151KB)
4. Fig. 3. The relationship between the haplotypes of 411 pairs of nucleotides of a fragment of the control region of mitochondrial DNA identified in populations of Qinling, sharp–winged and blunt-nosed lenks in the range of the genus Brachymystax: a - MR-tree constructed by the method of maximum economy, bootstrap values are shown on the branches, scale: number of mutation steps; b – median network (MJ), the number of vertical strokes on the edges corresponds to the number of substitutions between haplotypes, n is the number of samples. GenBank Sequence Numbers (www.ncbi.nlm.nih.gov/GenBank ), which correspond to the identified haplotypes, are given in Appendix 2.

Жүктеу (182KB)
5. Fig. 4. A haplotype tree (for 987 nucleotide pairs of a fragment of the control region of mitochondrial DNA) constructed by the maximum likelihood (ML) method using the optimal substitution model (HKY + F + G4). Data on populations of Qinling, sharp-winged and blunt-nosed (the last two forms from the Amur tributaries) lenks of the genus Brachymystax from China and South Korea were used. Two (A, B2) of the four (A, B1–B3) subclades of the Qingling lenk combine haplotypes from populations of South Korea (see the text for explanations). The values of the support indices (UFBoot/SH–aLRT) are shown on the branches (UFBoot – ultrafast bootstraps, SH–aLRT – Shimodaira–Hasegawa-similar approximate likelihood test). GenBank Sequence Numbers (www.ncbi.nlm.nih.gov/GenBank ) and their corresponding haplotypes are given in Appendix 3. Scale: the number of substitutions to the site.

Жүктеу (318KB)
6. Supplement 1
Жүктеу (23KB)
7. Supplement 2
Жүктеу (17KB)
8. Supplement 3
Жүктеу (21KB)
9. Supplement 4
Жүктеу (54KB)
10. Supplement 5
Жүктеу (17KB)
11. Supplement 6
Жүктеу (4MB)

© Russian Academy of Sciences, 2024