Fractal Analysis of Monte Carlo AuAu Events at GeV

Abstract

The results of a fractal analysis of Monte Carlo AuAu events at the c.m. collision energy of 
 GeV on the basis of the method of the System of Equations of P-basic Coverage (SePaC) are presented. A MultiPhase Transport (AMPT) model is used to generate collision events. The transverse momentum 
 of negatively charged particles detected in the pseudorapidity range of 
 in events of different centrality between (0–5)
 and (30–40)
 is considered as the variable under study. Sets of random events and Monte Carlo fractals are compared. The difference in the behavior of the dependence of the fraction of events reconstructed as fractals on the parameters of the method for different types of data are demonstrated. Optimum values of the parameters for an analysis of AMPT AuAu events are found. It is indicated that the portion of Prtn events reconstructed as fractals depend on the centrality and multiplicity in AuAu and random events, respectively. Insignificant distinctions in the behavior of the distributions with respect to dimension  for different centrality classes are found. Two event classes differing in the shape of transverse-moment spectra are singled out among AMPT AuAu events.

About the authors

T. G. Dedovich

Joint Institute for Nuclear Research; Dubna State University

Email: tdedovich@yandex.ru
141980, Dubna, Russia; 141980, Dubna, Russia

M. V. Tokarev

Joint Institute for Nuclear Research; Dubna State University

Author for correspondence.
Email: tokarev@jinr.ru
141980, Dubna, Russia; 141980, Dubna, Russia

References

  1. E. Akkermans, G. V. Dunne, and A. Teplyaev, Phys. Rev. Lett. 105, 230407 (2010).
  2. D. G. Moore and V. H. Satheeshkumar, Phys. Rev. D 90, 024075 (2014).
  3. P. V. Buividovich, T. Kalaydzhyan, and M. I. Poli- karpov, Phys. Rev. D 86, 074511 (2012).
  4. M. K. Ghosh, P. K. Haldar, S. K. Manna, A. Mukho- padhyay, and G. Singh, DAE Symp. Nucl. Phys. 54, 590 (2009).
  5. A. Deppman, Phys. Rev. D 93, 054001 (2016).
  6. N. G. Antoniou, N. Davis, and F. K. Diakonos, Phys. Rev. C 93, 014908 (2016).
  7. I. Zh. Bunzarov, N. Y. Chankova-Bunzarova, and O. V. Rogachevsky, Phys. Part. Nucl. Lett. 11, 404 (2014).
  8. J. D. Bjorken, Phys. Rev. D 45, 4077 (1992).
  9. Z.-W. Lin and C. M. Ko, Phys. Rev. C 65, 034904 (2002).
  10. Z.-W. Lin, C. M. Ko, B.-A. Li, B. Zhang, and S. Pal, Phys. Rev. C 72, 064901 (2005).
  11. T. G. Dedovich and M. V. Tokarev, Phys. Part. Nucl. Lett. 10, 481 (2013).
  12. T. G. Dedovich and M. V. Tokarev, Phys. Part. Nucl. Lett. 10, 491 (2013).
  13. T. G. Dedovich and M. V. Tokarev, Phys. Part. Nucl. Lett. 13, 169 (2016).
  14. T. G. Dedovich and M. V. Tokarev, Phys. Part. Nucl. Lett. 9, 552 (2012).
  15. T. G. Dedovich and M. V. Tokarev, Phys. Part. Nucl. Lett. 13, 178 (2016).
  16. T. G. Dedovich and M. V. Tokarev, Phys. Part. Nucl. Lett. 14, 865 (2017).
  17. T. G. Dedovich and M. V. Tokarev, Phys. Part. Nucl. Lett. 16, 240 (2019).
  18. T. G. Dedovich and M. V. Tokarev, Phys. Part. Nucl. Lett. 18, 93 (2021).
  19. F. Hausdorff, Math. Ann. 79, 157 (1918).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Pleiades Publishing, Ltd.