Origin of the signals registered on february 23, 1987 in gravity antennas

Capa

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

During the SN1987A outburst on February 23, 1987, four underground neutrino detectors and two gravitational antennas in Rome and Maryland detected signals associated with the gravitational collapse of the star’s core. Since it is impossible to detect direct gravitational radiation from the collapse of SN1987A with antennas, it is still not clear what events were recorded by gravitational antennas. In this work, an amplitude analysis of the signals from gravitational antennas in Rome and Maryland in the vicinity of the signals from neutrino detectors during Supernova SN1987A was carried out. It is shown that the amplitude distributions in all antenna signals are consistent with the distribution of fluctuating energy losses of atmospheric muons crossing the antennas. A conclusion has been made about the muon origin of signals detected by “Weber” type antennas — aluminized cylinders with a mass of 2–3 tons.

Texto integral

Acesso é fechado

Sobre autores

N. Agafonova

Institute for Nuclear Research of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: Agafonova@inr.ru
Rússia, Moscow

A. Malgin

Institute for Nuclear Research of the Russian Academy of Sciences

Email: Agafonova@inr.ru
Rússia, Moscow

Bibliografia

  1. В. Л. Дадыкин, Г. Т. Зацепин, В. Б. Корчагин, П. В. Корчагин, А. С. Мальгин, О. Г. Ряжская, В. Г. Рясный, В. П. Талочкин, Ф. Ф. Хальчуков, В. Ф. Якушев, М. Альетта, Дж. Бадино, Дж. Болонья, К. Кастаньоли, Ф. Кастеллина, В. Фульджионе и др., Письма в ЖЭТФ 45, 464 (1987) [V. L. Dadykin, G. T. Zatzepin, V. B. Korchagin, P. V. Korchagin, A. S. Mal’gin, O. G. Ryazhskaya, V. G. Ryasnyi, V. P. Talochkin, F. F. Khal’chukov, V. F. Yakushev, M. Aglietta, G. Badino, G. Bologna, C. Castagnoli, A. Castellina, W. Fulgione, et al., JETP Lett. 45, 593 (1987)].
  2. M. Aglietta, G. Badino, G. Bologna, C. Castagnoli, A. Castellina, V. L. Dadykin, W. Fulgione, P. Galeotti, F. F. Kalchukov, B. Kortchaguin, P. V. Kortchaguin, A. S. Malguin, V. G. Ryassny, O. G. Ryazhskaya, O. Saavedra, V. P. Talochkin, et al., Europhys. Lett. 3, 1315 (1987).
  3. Е. Н. Алексеев, Л. Н. Алексеева, В. И. Волченко, И. В. Кривошейна, Письма в ЖЭТФ 45, 461 (1987) [E. N. Alekseev, L. N. Alekseeva, V. I. Volchenko, and I. V. Krivosheina, JETP Lett. 45, 589 (1987)].
  4. K. Hirata, T. Kajita, M. Koshiba, M. Nakahata, Y. Oyama, N. Sato, A. Suzuki, M. Takita, Y. Totsuka, T. Kifune, T. Suda, K. Takahashi, T. Tanimori, K. Miyano, M. Yamada, E. W. Beier, et al., Phys. Rev. Lett. 58, 1490 (1987).
  5. R. M. Bionta, G. Blewitt, C. B. Bratton, D. Casper, A. Ciocio, R. Claus, B. Cortez, M. Crouch, S. T. Dye, S. Errede, G. W. Foster, W. Gajewski, K. S. Ganezer, M. Goldhaber, T. J. Haines, T. W. Jones, et al., Phys. Rev. Lett. 58, 1494 (1987).
  6. T. Bronzini, S. Frasca, G. Pizzella, G. V. Pallottino, and G. Vannaroni, Nuovo Cimento C 8, 300 (1985).
  7. J. Weber, Phys. Rev. Lett. 22, 1320 (1969).
  8. E. Amaldi, P. Bonifazi, M. G. Castellano, E. Coccia, C. Cosmelli, S. Frasca, M. Gabellieri, I. Modena, G. V. Pallottino, G. Pizzella, P. Rapagnani, F. Ricci, and G. Vannaroni, Europhys. Lett. 3, 1325 (1987).
  9. M. Aglietta, A. Castellina, W. Fulgione, G. Trinchero, S. Vernetto, C. Castagnoli, P. Galeotti, O. Saavedra, E. Amaldi, S. Frasca, G. V. Pallottino, G. Pizzella, P. Rapagnani, F. Ricci, P. Astone, C. Cosmelli, et al., Nuovo Cimento C 14, 171 (1991).
  10. P. Galeotti and G. Pizzella, Eur. Phys. J. C 76, 426 (2016); arXiv: 1603.05076 [physics.gen-ph].
  11. P. Bonifazi, V. Ferrari, S. Frasca, G. V. Pallottino, and G. Pizzella, Nuovo Cimento C 1, 465 (1978).
  12. M. Aglietta, G. Badino, G. Bologna, C. Castagnoli, A. Castellina, W. Fulgione, P. Galeotti, O. Saavedra, G. Trinchero, S. Vernetto, E. Amaldi, C. Cosmelli, S. Frasca, G. V. Pallottino, G. Pizzella, P. Rapagnani, et al., Nuovo Cimento C 12, 75 (1989).
  13. D. H. Ezrow, N. S. Wall, J. Weber, and G. B. Yodh, Phys. Rev. Lett. 24, 945 (1970).
  14. В. С. Мурзин, Введение в физику космических лучей (Москва, Атомиздат, 1979).
  15. E. Amaldi and G. Pizzella, Nuovo Cimento C 9, 612 (1986).
  16. D. Javorsek II, P. A. Sturrock, R. N. Lasenby, A. N. Lasenby, J. B. Buncher, E. Fischbach, J. T. Gruenwald, A. W. Hoft, T. J. Horan, J. H. Jenkins, J. L. Kerford, R. H. Lee, A. Longman, J. J. Mattes, B. L. Morreale, D. B. Morris, et al., Astropart. Phys. 34, 173 (2010); arXiv: 1007.0924 [nucl-ex].
  17. J. H. Jenkins and E. Fischbach, Astropart. Phys. 31, 407 (2009).
  18. J. H. Jenkins, D. W. Mundy, and E. Fischbach, Nucl. Instrum. Methods A 620, 332 (2010).
  19. A. Parkhomov, J. Mod. Phys. 2, 1310 (2011).
  20. T. Mohsinally, S. Fancher, M. Czerny, E. Fischbach, J. T. Gruenwald, J. Heim, J. H. Jenkins, J. Nistor, and D. O’Keefe, Astropart. Phys. 75, 29 (2016).
  21. D. E. Alburger, G. Harbottle, and E. F. Norton, Earth Planet. Sci. Lett. 78, 168 (1986).
  22. E. D. Falkenberg, Apeiron 8, 32 (2001).
  23. E. Fischbach, V. E. Barnes, N. Cinko, J. Heim, H. B. Kaplan, D. E. Krause, J. R. Leeman, S. A. Mathews, M. J. Mueterthies, D. Neff, and M. Pattermann, Astropart. Phys. 103, 1 (2018); arXiv: 1801.03585.
  24. B. P. Abbott et al. (LIGO Scientific Collab. and Virgo Collab.), Phys. Rev. Lett. 119, 161101 (2017).
  25. B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya, C. Affeldt, M. Afrough, B. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, et al., Astrophys. J. Lett. 848, L12 (2017).
  26. N. Agafonova, A. Malgin, and E. Fischbach; arXiv: 2107.00265 [nucl-ex].

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Events in the Rome (RGA) (a) and Maryland (MGA) (b) gravity detectors in the time vicinity τ of the LSD signal at 2 h 52 min UT on 23.02.1987. The vertical lines in Fig. a highlight the region of the LSD signal. The dotted curves correspond to the average temperature of the events: a — T = 29 K; b — T = 31 K.

Baixar (104KB)
3. Fig. 2. Differential energy distributions of 55 RGA events in the vicinity of the LSD signal at 2:52 UT on 23.02.1987 (histogram in Fig. a) and its integral form (b). The straight line in Fig. b — exp(–T/) — corresponds to = 29 K.

Baixar (92KB)
4. Fig. 3. Differential spectrum of muon ionization losses Nµ(ζ), measured at sea level (histogram in Fig. a), and its integral form Nµ(≥ ζ) (b) in relative units. Parameter ζ = ε/εpr, where εpr is the probable energy loss. Straight lines in Fig. a show the half-width of the distribution ∆ζ = ∆ε = 0.52. The straight line in Fig. b corresponds to <ζ> = 0.41.

Baixar (96KB)
5. Fig. 4. The same as in Fig. 2, but for 55 MGA events. In Fig. 4, b — exp(–T/) corresponds to = 31 K.

Baixar (87KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024