Nuclear Mass Model Based on Bayesian Estimate of Local Difference Experssions of Binding Energies

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The Bayesian estimates of the value of the residual neutron–proton interaction energy Δnp  using the Markov chain Monte Carlo method and Tikhonov regularization. These estimates are used for calculation of the nuclear mass table for A > 20. The accuracy of the obtained predictions is evaluated by comparison with experimental data from AME2020 and other theoretical nuclear mass models.

作者简介

K. Stopani

Skobeltsyn Institute of Nuclear Physics, Moscow State University

Email: kstopani@sinp.msu.ru
Moscow, Russia

E. Vladimirova

Faculty of Physics, Moscow State University

Email: kstopani@sinp.msu.ru
Moscow, Russia

V. Negrebetskiy

Faculty of Physics, Moscow State University; Justus Liebig University

Email: kstopani@sinp.msu.ru
Moscow, Russia; Giessen, Germany

M. Simonov

Faculty of Physics, Moscow State University; Justus Liebig University

Email: kstopani@sinp.msu.ru
Moscow, Russia; Giessen, Germany

T. Tretyakova

Skobeltsyn Institute of Nuclear Physics, Moscow State University; Faculty of Physics, Moscow State University

编辑信件的主要联系方式.
Email: kstopani@sinp.msu.ru
Moscow, Russia; Moscow, Russia

参考

  1. G. T. Garvey, W. J. Gerace, R. L. Jaffe, I. Talmi, and I. Kelson, Rev. Mod. Phys. 41, S1 (1969).
  2. С. Шапиро, С. Тьюколски, Чёрные дыры, белые карлики и нейтронные звёзды, ч. 1 (Мир, Москва, 1985).
  3. J. Jänecke and H. Behrens, Phys. Rev. C 9, 1276 (1974).
  4. J. Jänecke and P. J. Masson, At. Data Nucl. Data Tables 39, 265 (1988).
  5. P. J. Masson and J. Jänecke, At. Data Nucl. Data Tables 39, 273 (1988).
  6. Е. В. Владимирова, Б. С. Ишханов, М. В. Симонов, Т. Ю. Третьякова, Уч. записки физ. фак-та Моск. ун-та, 1930409 (2019).
  7. E. V. Vladimirova, B. S. Ishkhanov, M. V. Simonov, S. V. Sidorov, and T. Yu Tretyakova, Int. J. Mod. Phys. E 30, 2150025 (2021).
  8. E. V. Vladimirova, M. V. Simonov, and T. Yu. Tre- tyakova, AIP Conf. Proc. 2377, 070003 (2021).
  9. D. Lunney, J. M. Pearson, and C. Thibault, Rev. Mod. Phys. 75, 1021 (2003).
  10. Z. He, M. Bao, Y. M. Zhao, and A. Arima, Phys. Rev. C 90, 054320 (2014).
  11. J. L. Tian, N. Wang, C. Li, and J. J. Li, Phys. Rev. C 87, 014313 (2013).
  12. Y. Y. Cheng, Y. M. Zhao, and A. Arima, Phys. Rev. C 89, 061304 (2014).
  13. W. J. Huang, G. Audi, M. Wang, F. G. Kondev, S. Naimi, and X. Xu, Chin. Phys. C 41, 030002 (2017); M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xu, Chin. Phys. C 41, 030003 (2017).
  14. А. А. Боровков, Математическая статистика (Лань, Cанкт-Петербург, 2010).
  15. А. Н. Тихонов, Докл. Акад. Наук СССР 151, 501 (1963).
  16. A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dun- son, A. Vehtari, and D. B. Rubin, Bayesian Data Analysis, 3rd ed. (New York, Chapman and Hall/CRC, 2013).
  17. R. M. Neal, Tech. Report CRG-TR-93-1 (University of Toronto, September 1993).
  18. W. J. Huang, M. Wang, F. G. Kondev, G. Audi, and S. Naimi, Chin. Phys. C 45, 030002 (2021); M. Wang, W. J. Huang, F. G. Kondev, G. Audi, and S. Naimi, Chin. Phys. C 45, 030003 (2021).
  19. P. Möller, A. J. Sierk, T. Ichikawa, and H. Sagawa, At. Data Nucl. Data Tables 109, 1 (2016).
  20. S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. Lett. 102, 152503 (2009).
  21. A. Pastore, D. Neill, H. Powell, K. Medler, and C. Barton, Phys. Rev. C 101, 035804 (2020).
  22. J. Duflo and A. P. Zuker, Phys. Rev. C 52, R23 (1995).
  23. M. Shelley and A. Pastore, Universe 7, 131 (2021).
  24. L. Neufcourt, Y. Cao, W. Nazarewicz, and F. Viens, Phys. Rev. C 98, 034318 (2018).
  25. N.-N. Ma, H.-F. Zhang, X.-J. Bao, and H.-F. Zhang, Chin. Phys. C 43, 044105 (2019).
  26. A. Gration and M. I. Wilkinson, Mon. Not. Roy. Astron. Soc. 485, 4878 (2019).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2023