MAGNITNYE SVOYSTVA I STRUKTURA INTERMETALLIDOV La1–xErxMn2Si2

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

С использованием порошковой рентгеновской дифракции, дифференциальной сканирующей калориметрии и магнитных измерений на квазимонокрысталлах исследованы изменения параметров решетки и температур магнитных фазовых переходов в соединениях La1–xErxMn2Si2 (0 ≤ x ≤ 1) со структурой ThCr2Si2. Показано, что замещение La на Er приводит к уменьшению объема элементарной ячейки на 13 %. С ростом x происходит переход от ферромагнитного упорядочения к антиферромагнитному. По данным магнитных измерений при x ≥ 0.4 обнаружены признаки магнитного перехода между двумя различными антиферромагнитными фазами. Температурная зависимость восприимчивости подчиняется модифицированному закону Кюри – Вейсса. Установлено, что температура Нееля соединений увеличивается с ростом концентрации Er от 317 K при x = 0.4 до 531 K при x = 1. По полученным данным построена магнитная фазовая диаграмма системы La1–xErxMn2Si2.

作者简介

N. Mushnikov

Институт физики металлов им. М.Н. Мигеева Уральского отделения Российской академии наук; Уральский федеральный университет им. первого Президента России В.Н. Ельцина

Email: mushnikov@imp.uran.ru
Екатеринбург, Россия; Екатеринбург, Россия

E. Gerasimov

Институт физики металлов им. М.Н. Мигеева Уральского отделения Российской академии наук; Уральский федеральный университет им. первого Президента России В.Н. Ельцина

Екатеринбург, Россия; Екатеринбург, Россия

P. Terent'ev

Институт физики металлов им. М.Н. Мигеева Уральского отделения Российской академии наук; Уральский федеральный университет им. первого Президента России В.Н. Ельцина

Екатеринбург, Россия; Екатеринбург, Россия

L. Stashkova

Институт физики металлов им. М.Н. Мигеева Уральского отделения Российской академии наук

Екатеринбург, Россия

A. Bartashevich

Институт физики металлов им. М.Н. Мигеева Уральского отделения Российской академии наук; Уральский федеральный университет им. первого Президента России В.Н. Ельцина

Екатеринбург, Россия; Екатеринбург, Россия

V. Gaviko

Институт физики металлов им. М.Н. Мигеева Уральского отделения Российской академии наук; Уральский федеральный университет им. первого Президента России В.Н. Ельцина

Екатеринбург, Россия; Екатеринбург, Россия

参考

  1. G. Li, J. Wang, Z. Cheng, Q. Ren, C. Fang, and S. Dou, Appl. Phys. Lett. 106, 182405 (2015).
  2. L. Li, K. Nishimura, W. D. Hutchison, Z. Qian, D. Huo, and T. Namiki, Appl. Phys. Lett. 100, 152403 (2012).
  3. E. G. Gerasimov, N. V. Mushnikov, K. Koyama, T. Kanomata, and K. Watanabe, J. Phys.: Condens. Matter 20, 445219 (2008).
  4. N. V. Mushnikov and E. G. Gerasimov, J. Alloys Compd. 676, 74 (2016).
  5. G. Gong, L. Xu, Y. Bai, Y. Wang, S. Yuan, Y. Liu, and Z. Tian, Phys. Rev. Mater. 5, 034405 (2021).
  6. D. Huang, H. Li, B. Ding, L. Song, X. Li, X. Xi, Y. C. Lau, J. Gao, and W. Wang, Phys. Rev. B 109, 144406 (2024).
  7. A. Szytula, in Handbook of Magnetic Materials, ed. by K. H. J. Buschow, Elsevier, North-Holl., Amsterdam (1991), p. 85.
  8. G. Venturini, R. Welter, E. Ressouche, and B. Malaman, J. Magn. Magn. Mater. 150, 197 (1995).
  9. I. Dincer, Y. Elerman, A. Elmali, H. Ehrenberg, and G. Andre, J. Magn. Magn. Mater. 313, 34 (2007).
  10. E. G. Gerasimov, N. V. Mushnikov, and T. Goto, Phys. Rev. B 72, 064446 (2005).
  11. M. Hofmann, S. J. Campbell, S. J. Kennedy, and X. L. Zhao, J. Magn. Magn. Mater. 176, 279 (1997).
  12. E. G. Gerasimov, M. I. Kurkin, A. V. Korolyov, and V. S. Gaviko, Physica B 322, 297 (2002).
  13. A. Szytula and I. Szott, Solid State Commun. 40, 199 (1981).
  14. E. G. Gerasimov, N. V. Mushnikov, P. B. Terentev, K. A. Yazovskikh, I. S. Titov, V. S. Gaviko, and R. Y. Umetsu, J. Magn. Magn. Mater. 422, 237 (2017).
  15. E. G. Gerasimov, N. V. Mushnikov, P. B. Terentev, and A. N. Pirogov, J. Alloys Compd. 731, 397 (2018).
  16. N. V. Mushnikov, E. G. Gerasimov, P. B. Terentev, V. S. Gaviko, H. M. Alsafi, M. A. Semkin, A. M. Bartashevich, and A. N. Pirogov, Phys. Met. Metallogr. 126, 248 (2025).
  17. E. G. Gerasimov, P. B. Terentev, N. V. Mushnikov, and V. S. Gaviko, J. Alloys Compd. 769, 1096 (2018).
  18. E. G. Gerasimov, P. B. Terentev, A. F. Gubkin, H. E. Fischer, D. I. Gorbunov, and N. V. Mushnikov, J. Alloys Compd. 818, 152902 (2020).
  19. A. M. Bartashevich, N. V. Mushnikov, E. G. Gerasimov, H. M. Alsafi, A. N. Pirogov, V. V. Govorina, P. B. Terentev, M. A. Semkin, V. I. Maksimov, and D. S. Neznakhin, J. Alloys Compd. 1027, 182484 (2025).
  20. J. Leciejewicz, S. Siek, and A. Szytula, J. Magn. Magn. Mater. 40, 265 (1984).
  21. E. Duman, M. Acet, I. Dincer, A. Elmali, and Y. Elerman, J. Magn. Magn. Mater. 309, 40 (2007).
  22. R. Welter, G. Venturini, D. Fruchart, and B. Malaman, J. Alloys Compd. 191, 263 (1993).
  23. J. L. Wang, S. J. Kennedy, S. J. Campbell, M. Hofmann, and S. X. Dou, Phys. Rev. B 87, 104401 (2013).
  24. Л. А. Сташкова, Е. Г. Герасимов, Н. В. Мушников, ФММ 125, 460 (2024).
  25. Л. А. Сташкова, А. М. Барташевич, П. Б. Терентьев, В. С. Гавико, Е. Г. Герасимов, Н. В. Мушников, ФТТ 67, 685 (2025).
  26. I. Ijjaali, G. Venturini, B. Malaman, and E. Ressouche, J. Alloys Compd. 266, 61 (1998).
  27. E. G. Gerasimov, N. V. Mushnikov, and V. S. Gaviko, Solid State Phenom. 190, 171 (2012).
  28. S. Kervan, A. Kilic, and A. Gencer, Physica B 344, 195 (2004).
  29. S. Kervan, A. Kilic, and A. Gencer, Phys. Status Solidi B 242, 3195 (2005).
  30. D. M. Korotin, L. D. Finkelstein, S. V. Streltsov, E. G. Gerasimov, E. Z. Kurmaev, and N. V. Mushnikov, Comput. Mater. Sci. 184, 109901 (2020).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025