Synthesis of Graphdiynes, Morphological Study, and Comparative Analysis of the Hydrogen Adsorption Properties of Graphenes and Graphdiynes

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Graphdiynes (GDYs) are two-dimensional carbon nanostructures containing sp- and sp2-hybridized carbon atoms that form conjugated bonds in the linear chains connecting six-membered carbon rings. The results of scanning and transmission electron microscopy (SEM and TEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy showed that GDYs have a uniform surface and contain conjugated –С≡С–С≡С bonds. The hydrogen-adsorption capacity of GDYs was studied, and a comparative analysis of hydrogen adsorption in GDYs, graphenes, graphene nanotubes, and graphene structures formed on zeolites was performed. The substrate on which the carbon nanostructure is formed was shown to have a significant effect on the adsorption capacity of the latter. The possibility and prospects for the synthesis of graphenes on catalysts to increase their efficiency in hydrogenation processes are considered.

Sobre autores

A. Soldatov

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: Soldatov@ips.ac.ru
119991, Moscow, Russia

A. Budnyak

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: Soldatov@ips.ac.ru
119991, Moscow, Russia

A. Kirichenko

Private Institution of the State Atomic Energy Corporation Rosatom ITER Project Center

Email: Soldatov@ips.ac.ru
119991, Moscow, Russia

A. Ilolov

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Autor responsável pela correspondência
Email: Soldatov@ips.ac.ru
119991, Moscow, Russia

Bibliografia

  1. Balaban A.T., Rentia C.C., Ciupitu E. // Rev. Roum. Chim. 1968. V. 13. P. 231.
  2. Baughman R., Eckhardt H., Kertesz M. // J. Chem. Phys. 1987. V. 87. № 11. P. 6687.
  3. Ivanovskii A.L. // Prog. Solid State Chem. 2013. V. 41. № 1. P. 1.
  4. Wan W.B., Brand S.C., Pak J.J. et al. // Chem. A Eur. J. 2000. V. 6. № 11. P. 2044.
  5. Li G.X., Li Y.L., Liu H.B. et al. // Chem. Commun. 2010. V. 46. P. 3.
  6. Li G., Li Y., Qian X. et al. // J. Phys. Chem. C. 2011. V. 115. P. 2611.
  7. Zhou J., Gao X., Liu R. et al. // J. Am. Chem. Soc. 2015. V. 137. № 24. P. 7596.
  8. Yang N., Liu Y., Wen H. et al. // Nano. 2013. V. 7. № 2. P. 1504.
  9. Huang C., Zhang S., Liu H. et al. // Nano Energy. 2015. V. 11. P. 481.
  10. Kuang C., Tang G., Jiu T. et al. // Nano Lett. 2015. V. 15. № 4. P. 2756.
  11. Gao X., Zhou J., Du R. et al. // Adv. Mater. 2015. https://doi.org/10.1002/adma.201504407
  12. Li J., Xu J., Xie Z. et al. // Adv. Mater. 2018. V. 30. P. 1800548.
  13. Si H-Y., Mao C-J., Zhou J-Y. et al. // Carbon. 2018. V. 132. P. 598.
  14. Yao Y., Jin Z., Chen Y. et al. // Ibid. 2018. V. 129. P. 228.
  15. Shekar S.C., Swath R.S. // Ibid. 2018. V. 126. P. 489.
  16. Li C., Lu X., Han Y. et al. // Nano Research. 2018. V. 11. № 3. P. 1714.
  17. Pan Y., Wang Y., Wang L. et al. // Nanoscale. 2015. V. 7. P. 2116.
  18. Kan X., Ban Y., Wu C. et al. // ACS Appl. Mater. & Interfaces. 2018. V. 10. № 1. P. 53.
  19. Mortazavi B., Makaremi M., Shahrokhi M. et al. // Carbon. 2018. V. 137. P. 57.
  20. Dong Y., Zhao Y., Chen Y. et al. // J. of Materials Sci. 2018. V. 53. № 12. P. 8921.
  21. Huoliang Gu. et al. // J. Am. Chem. Soc. 2021. V. 143. № 23. P. 8679.
  22. Yuncheng Du. et al. // Acc. Chem. Res. 2020. V. 53. № 2. P. 459.
  23. Yang Z. et al. // Comput. Mater. Sci. 2019. V. 160. P. 197.
  24. Zuo Z., Li Y. // Joule. 2019. V. 3. P. 899.
  25. Hui L., Xue Y., Yu H. et al. // J. Am. Chem. Soc. 2019. V. 141. P. 10677.
  26. Guo J., Shi R.C., Wang R. et al. // Laser Photonics Rev. 2020. V. 14. P. 1900367.
  27. Yin C., Li J.Q., Li T.R. et al. // Adv. Funct. Mater. 2020. V. 30. https://doi.org/. 202001396.https://doi.org/10.1002/adfm
  28. Guo J., Shi R.C., Wang R. et al. // Laser Photonics Rev. 2020. V. 14. P. 1900367.
  29. Yan H., Yu P., Han G. et al. // Angew. Chem. Int. Ed. Engl. 2019. V. 58. P. 746.
  30. Zhou J.Y., Xie Z.Q., Liu R. et al. // ACS Appl. Mater. Interfaces. 2019. V. 11. P. 2632.
  31. Lv J.X., Zhang Z.M. Wang J. et al. // WACS Appl. Mater. Interfaces. 2019. V. 32.
  32. Zuo Z., Shang H., Chen Y. et al. // Chem. Commun. (Camb.). 2017. V. 53. P. 8074.
  33. Li R., Sun H., Zhang Ch. et al. // Carbon. 2022. V. 188. P. 25.
  34. Gao J., Li J., Chen Y. et al. // Nano Energy. 2018. V. 43. P. 192.
  35. Yang Z., Zhang Y., Guo M. et al. // Comput. Mater. Sci. 2019. V. 160. P. 197.
  36. Солдатов А.П., Бондаренко Г.Н., Сорокина Е.Ю. // Журн. физ. химии. 2015. Т. 89. № 2. С. 306. [Soldatov A.P., Bondarenko G.N., Sorokina E.Yu. // Russ. J. of Phys. Chem. A. 2015. V. 89. № 2. P. 282.]
  37. Tuinstra R., Koenig J.L. // J. Chem. Phys. 1970. V. 53. P. 1126.
  38. Estrade-Szwarckopf H. // Carbon. 2004. V. 42. P. 1713.
  39. Ferrari A.C., Meyer J.C., Scardaci V. et al. // Phys. Rev. Lett. 2006. V. 97. P. 187401.
  40. Солдатов А.П. // Журн. физ. химии. 2020. Т. 94. № 4. С. 483. [Soldatov A.P. // Russ. J. of Phys. Chem. A. 2020. V.94. № 4. P. 663.]
  41. Солдатов А.П., Кириченко А.Н., Татьянин Е.В. // Там же. 2016. Т. 90. № 7. С. 1038.
  42. Солдатов А.П. // Там же. 2019. Т. 93. № 3. С. 398. [Soldatov A.P. // Ibid. 2019. V. 93. №3. P. 494.]
  43. Солдатов А.П. // Там же. 2014. Т. 88. № 7–8. С. 1207. [Soldatov A.P. // Ibid. 2014. V. 88. № 8. P. 1388.]
  44. Солдатов А.П. // Журн. физ. химии. 2017. Т. 91. № 5. С. 897. [Soldatov A.P. // Ibid.2017. V. 91. № 5. P. 931.]
  45. Токабе И.К. Катализаторы каталитические процессы. М.: Наука, 1993.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (1MB)
4.

Baixar (112KB)
5.

Baixar (177KB)

Declaração de direitos autorais © А.П. Солдатов, А.Д. Будняк, А.Н. Кириченко, А.М. Илолов, 2023