Some Features of Quantitative Analysis of Surface Compounds by Laser Desorption Mass Spectrometry

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The results of quantitative analysis of widely used surface samples are shown. Corrosion damage to copper and steel surfaces can be analyzed quantitatively using cobalt chloride as the internal standard. The study also demonstrates the feasibility of comparative quantitative analysis of blue ink using methylene blue homologues as standards. When conducting quantitative analysis on surfaces with inhomogeneous morphology, it has been observed that direct analysis is not possible because of uneven ionization of the sample. It has been found that when analyzing such surfaces, it is necessary to exclude points with a low signal-to-noise ratio from consideration. The work highlights the extensive possibilities of utilizing quantitative analysis in mass spectrometric visualization of the surface. The work is aimed at demonstrating the capabilities of the laser desorption mass spectrometric method for analyzing the surfaces of various materials, which will make this method universal for searching for a wide range of contaminants on the surface of materials of various nature.

Авторлар туралы

I. Pytskii

Frumkin Institute of Physical Chemistry and Electrochemistry

Email: ivanpic4586@gmail.com
119991, Moscow, Russia

E. Kuznetsova

Frumkin Institute of Physical Chemistry and Electrochemistry

Email: ivanpic4586@gmail.com
119991, Moscow, Russia

A. Buryak

Frumkin Institute of Physical Chemistry and Electrochemistry

Хат алмасуға жауапты Автор.
Email: ivanpic4586@gmail.com
119991, Moscow, Russia

Әдебиет тізімі

  1. Picó Y. // Curr. Opin. Environ. Sci. 2020. T. 18. № 1. C. 47.
  2. Feider C.L., Krieger A., DeHoog R.J., Eberlin L.S. // Anal. chem. 2019. T. 91. № 7. C. 4266.
  3. Ural N. Open Geosci. 2021. T. 13. № 4. C. 197.
  4. Khan H., Yerramilli A.S., D’Oliveira A. et al. // Can. J. Chem. Eng. 2020. T. 98. № 6. C. 1255.
  5. Wójtowicz A., Wietecha-Posłuszny R. // Appl. Phys. A. 2019. T. 125. № 1. C. 1.
  6. Hong Y., Birse N., Quinn B. et al. // J. Food Sci. 2022. T. 6. № 9. C. 14.
  7. Hou T.Y., Chiang-Ni C., Teng S.H.J. // Food Drug Anal. 2019. T. 27. № 2. C. 404.
  8. Welker M., Van Belkum A., Girard V. et al. // Expert Rev. Proteomics. 2019. T. 16. № 9. C. 695.
  9. Pytskii I.S., Minenkova I.V., Kuznetsova E.S. et al. // Pure Appl. Chem. 2020. T. 92. № 3. C. 1227.
  10. Pytskii I.S., Kuznetsova E.S., Buryak A.K. // Russ. J. Phys. Chem. A. 2021. T. 95. № 11. C. 2319.
  11. Pytskii I.S., Kuznetsova E.S., Buryak A.K. // Ibid. 2022. T. 96. № 10. C. 2215.
  12. Minenkova I.V., Pytskii I.S., Buryak A.K. // Prot. Met. Phys. Chem. Surf. 2022. T. 58. № 6. C. 605.
  13. Schulz S., Becker M., Groseclose M.R. et al. // Curr. Opin. Biotechnol. 2019. T. 55. № 2. C. 51.
  14. Hendel K.K., Bagger C., Olesen U.H. et al. // Drug deliv. 2019. T. 26. № 1. C. 244.
  15. Morosi L., Matteo C., Meroni M. et al. // Talanta. 2022. T. 237. № 1. C. 122918.
  16. Iartsev S.D., Pytskii I.S., Zenkevich I.G., Buryak A.K. // J. Anal. Chem. 2017. T. 72. № 6. C. 624.
  17. Ibrahim S., Froehlich B.C., Aguilar-Mahecha A. et al. // Anal. Chem. 2020. T. 92. № 18. C. 12407.
  18. Rzagalinski I., Volmer D.A. et al. Biochim. Biophys. Acta Proteins Proteom. 2017. T. 1865. № 11. C. 726.

Қосымша файлдар


© И.С. Пыцкий, Е.С. Кузнецова, А.К. Буряк, 2023