Fe- and Cu–Zn-Containing Catalysts Based on Natural Aluminosilicate Nanotubes and Zeolite H-ZSM-5 in the Hydrogenation of Carbon Dioxide

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Iron- and Cu–Zn-containing carbon dioxide hydrogenation catalysts based on natural aluminosilicate nanotubes and zeolite H-ZSM-5 are synthesized. Their textural and acidic properties are studied via low-temperature nitrogen adsorption–desorption, temperature-programmed desorption of ammonia, temperature-programmed reduction of hydrogen, and elemental analysis. The effect the temperatures of the reaction have on the conversion of CO2 and distribution of its product is studied. Catalysts based on aluminosilicate halloysite nanotubes exhibit methanol and С2–С4 hydrocarbon selectivities of 88 and 16%, respectively.

Sobre autores

E. Smirnova

Gubkin State University of Oil and Gas

Email: smirnova.em94@gmail.com
119991, Moscow, Russia

N. Evdokimenko

Faculty of Chemistry, Moscow State University

Email: smirnova.em94@gmail.com
119991, Moscow, Russia

M. Reshetina

Gubkin State University of Oil and Gas

Email: smirnova.em94@gmail.com
119991, Moscow, Russia

N. Demikhova

Gubkin State University of Oil and Gas

Email: smirnova.em94@gmail.com
119991, Moscow, Russia

A. Kustov

Faculty of Chemistry, Moscow State University

Email: smirnova.em94@gmail.com
119991, Moscow, Russia

S. Dunaev

Faculty of Chemistry, Moscow State University

Email: smirnova.em94@gmail.com
119991, Moscow, Russia

V. Vinokurov

Gubkin State University of Oil and Gas

Email: smirnova.em94@gmail.com
119991, Moscow, Russia

A. Glotov

Gubkin State University of Oil and Gas; Faculty of Chemistry, Moscow State University

Autor responsável pela correspondência
Email: smirnova.em94@gmail.com
119991, Moscow, Russia; 119991, Moscow, Russia

Bibliografia

  1. Yang H., Xu Z., Fan M. et al. // J. of Environmental Sciences. 2008. V. 20. № 1. P. 14–27.
  2. Mikkelsen M., Jørgensen M., Krebs F.C. // Energy and Environmental Science. 2010. V. 3. № 1. P. 43–81.
  3. Férey G., Serre C., Devic T. et al. // Chemical Society Reviews. 2011. V. 40. № 2. P. 550–562. https://doi.org/10.1039/c0cs00040j
  4. Hunt A.J., Sin E.H.K., Marriott R., Clark J.H. // ChemSusChem. 2010. V. 3. № 3. P. 306–322.
  5. Centi G., Perathoner S. // Studies in Surface Science and Catalysis. 2004. V. 153. P. 1–8.
  6. Sai Prasad P.S., Bae J.W., Jun K.W., Lee K.W. // Catalysis Surveys from Asia. 2008. V. 12. № 3. P. 170–183.
  7. Evdokimenko N.D., Kustov A.L., Kim K.O. et al. // Functional Materials Letters. 2020. V. 13. № 4. P. 2040004.
  8. Bogdan V.I., Koklin A.E., Kustov A.L. et al. // Molecules. 2021. V. 26. № 10. P. 2883.
  9. Kovalskii A.M., Volkov I.N., Evdokimenko N.D. et al. // Applied Catalysis B: Environmental. 2022. V. 303. P. 120891.
  10. Konopatsky A.S., Firestein K.L., Evdokimenko N.D. et al. // J. of Catalysis. 2021. V. 402. P. 130.
  11. Frontera P., Macario A., Malara A. et al. // Functional Materials Letters. 2018. V. 11. № 5. P. 1850061.
  12. Evdokimenko N., Yermekova Z., Roslyakov S. et al. // Materials. 2022. V. 15. № 15. P. 5129.
  13. Ye R.P., Ding J., Gong W. et al. // Nature Communications. 2019. V. 10. № 1. P. 1–15.
  14. Wang G., Mao D., Guo X., Yu J. // International Journal of Hydrogen Energy. 2019. V. 44. № 8. P. 4197–4207.
  15. Tursunov O., Kustov L., Kustov A. // Oil and Gas Science and Technology. 2017. V. 72. № 5. P. 30.
  16. Evdokimenko N.D., Kapustin G.I., Tkachenko O.P. et al. // Molecules. 2022. V. 27. № 3. P. 1065.
  17. Li Z., Qu Y., Wang J. et al. // Joule. 2019. V. 3. № 2. P. 570.
  18. Rafiee A., Khalilpour K.R., Milani D. et al. // J. of Environmental Chemical Engineering. 2018. V. 6. № 5. P. 5771.
  19. Ni Y., Chen Z., Fu Y. et al. // Nature Communications. 2018. V. 9. № 1. P. 1.
  20. Wang Y., Tan L., Tan M. et al. // ACS Catalysis. 2019. V. 9. № 2. P. 895.
  21. Li Z., Wang J., Qu Y. et al. // Ibid. 2017. V. 7. № 12. P. 8544.
  22. Gao P., Li S., Bu X. et al. // Nature Chemistry. 2017. V. 9. № 10. P. 1019.
  23. Wang J., Zhang A., Jiang X. et al. // J.of CO2 Utilization. 2018. V. 27. № 2. V. 81.
  24. Liu X., Wang M., Zhou C. // Chemical Communications. 2017. V. 54. № 2. P. 140.
  25. Gao P., Dang S., Li S. et al. // ACS Catalysis. 2018. V. 8. № 1. P. 57.
  26. Wang J., You Z., Zhang Q. et al. // Catalysis today. 2013. V. 215. P. 18.
  27. Wei J., Ge Q., Yao R. et al. // Nature communications. 2017. V. 8. № 1. P. 1.
  28. Rubtsova M., Smirnova E., Boev S. et al. // Microporous and Mesoporous Materials. 2022. V. 330. № 8. P. 111622.
  29. Afokin M.I., Smirnova E.M., Starozhitskaya A.V. et al. // Chemistry and Technology of Fuels and Oils. 2020. V. 55. № 6. P. 682.
  30. Demikhova N.R., Boev S.S., Reshetina M.V. et al. // Petroleum Chemistry. 2021. V. 61. № 10. P. 1085.
  31. Smirnova E.M., Melnikov D.P., Demikhova N.R. et al. // Petroleum Chemistry. 2021. V. 61. № 7. P. 773.
  32. Glotov A., Vutolkina A., Pimerzin A. et al. // Chemical Society Reviews. 2021. V. 50. № 16. P. 9240.
  33. Mosallanejad S., Dlugogorski B.Z., Kennedy E.M. et al. // ACS Omega. 2018. V. 3. № 5. P. 5362.
  34. Zhu N., Lian Z., Zhang Y. et al. // Applied Surface Science. 2019. V. 483. P. 536.
  35. Oseke G.G., Atta A.Y., Mukhtar B. et al. // J. of King Saud University-Engineering Sciences. 2021. V. 33. № 8. P. 531.
  36. Ayodele O.B., Tasfy S.F.H., Zabidi N.A.M. et al. // J. of CO2 Utilization. 2017. V. 17. P. 273.
  37. Liu Y., Zhang Y., Wang T., Tsubaki N. // Chemistry Letters. 2007. V. 36. № 9. P. 1182.
  38. Cui W.-G., Li Y.-Т., Yu L. et al. // ACS applied materials & interfaces. 2021. V. 13. № 16. P. 18693.
  39. Li C., Yuan X., Fujimoto K. // Applied Catalysis A: General. 2014. V. 469. P. 306.
  40. Kim K.O., Evdokimenko N.D., Pribytkov P.V. et al. // Rus. J. of Physical Chemistry A. 2021. V. 95. № 12. P. 2422.
  41. Bansode A., Urakawa A. // J. of Catalysis. 2014. V. 309. P. 66.
  42. Liu R., Ma Z., Sears J.D. et al. // J. of CO2 Utilization. 2020. V. 41. P. 101290.
  43. Dorner R.W., Hardy D.R., Williams F.W. et al. // Applied Catalysis A: General. 2010. V. 373. № 1–2. P. 112.
  44. Lan L., Wang A., Wang Y. // Catalysis Communications. 2019. V. 130. P. 105761.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (98KB)
3.

Baixar (106KB)
4.

Baixar (1MB)
5.

Baixar (132KB)
6.

Baixar (77KB)

Declaração de direitos autorais © Е.М. Смирнова, Н.Д. Евдокименко, М.В. Решетина, Н.Р. Демихова, А.Л. Кустов, С.Ф. Дунаев, В.А. Винокуров, А.П. Глотов, 2023