Применение лазерной десорбции/ионизации для исследования гетерополикислот

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

В работе исследована фрагментация фосфорномолибденовой кислоты (ФМК) методом лазерной десорбции/ионизации. Обнаружено, что при лазерной десорбции/ионизации кристаллы кислоты склонны к образованию частиц кластерного типа (MoO3)n и HPO3∙(MoO3)n. При регистрации положительных ионов были обнаружены частицы с общей формулой HPO2∙(MoO3)n, в состав которых входят Mo+5 и Mo+6. Масс-спектрометрическое исследование растворов ФМК совместно с матрицей 2,5-дигидроксибензойной кислоты позволило зафиксировать гидратированный молекулярный ион H3PMo12O40·MoO3·4H2O. При изучении влияния параметров лазерной десорбции/ионизации на информативность масс-спектра установлено, что в общем случае значения интенсивности пика и мощности лазера, а также число импульсов находятся в симбатной зависимости. Интенсивность пика в большей степени зависит от мощности лазера, чем от количества выстрелов.

全文:

受限制的访问

作者简介

И. Миненкова

Институт физической химии и электрохимии имени А.Н. Фрумкина РАН

编辑信件的主要联系方式.
Email: irina.vl.minenkova@mail.ru
俄罗斯联邦, Москва

А. Емельянов

Институт физической химии и электрохимии имени А.Н. Фрумкина РАН

Email: irina.vl.minenkova@mail.ru
俄罗斯联邦, Москва

И. Тарханова

Московский государственный университет имени М.В. Ломоносова

Email: irina.vl.minenkova@mail.ru
俄罗斯联邦, Москва

А. Буряк

Институт физической химии и электрохимии имени А.Н. Фрумкина РАН

Email: irina.vl.minenkova@mail.ru
俄罗斯联邦, Москва

参考

  1. Keggin J.F. // Ser. A. Contain. Pap. a Math. Phys. Character. 1934. V. 144. № 851. P. 75.
  2. Koshcheeva O.S., Shuvaeva O.V., Shtadler D.V., Kuznetsova L.I. // Chem. Sustain. Dev. 2005. № 3. P. 467.
  3. Zhang Y., Zhang J., Wu L. et al. // J. Hazard. Mater. 2021. V. 404. Part B. № 124044. doi: 10.1016/j.jhazmat.2020.124044
  4. Nikoonahad A., Djahed B., Norzaee S. et al. // Peer J. 2018. V. 6:e5501. doi: 10.7717/peerj.5501
  5. Feng C., Shang H., Liu X. // Chinese J. Catal. 2014. V. 35. P. 168. doi: 10.1016/S1872-2067(12)60736-0
  6. Morosanova M.A., Morosanova E.I. // Chem. Cent. J. 2017. V. 11. № 3. P. 1. https://doi.org/10.1186/s13065-016-0233-5
  7. Burns D.T., Chimpalee N., Chimpalee D., Rattanariderom S. // Anal. Chim. Acta. 1991. V. 243. P. 187. https://doi.org/10.1016/S0003-2670(00)82559-3
  8. Morosanova E.I., Reznikova E.A., Velikorodnyi A.A. // J. Anal. Chem. 2001. V. 56. P. 173–177. https://doi.org/10.1023/A:1009459021972
  9. Orsina V., Sasca V., Popa A., Suba M. // Catal. Today. 2021. V. 366. P. 123. https://doi.org/10.1016/j.cattod.2019.12.040
  10. Rodikova Y., Zhizhina E. // React. Kinet. Mech. Catal. 2020. V. 130. P. 403. https://doi.org/10.1007/s11144-020-01782-z
  11. Bryzhin A.A., Gantman M.G., Buryak A.K., Tarkhanova I.G. // Appl. Catal. B Environ. 2019. V. 257. № 117938. https://doi.org/10.1016/j.apcatb.2019.117938
  12. Bryzhin A.A., Buryak A.K., Gantman M.G. et al. // Kinet. Catal. 2020. V. 61. P. 775. https://doi.org/10.1134/S0023158420050018
  13. Frenzel R.A., Palermo V., Sathicq A.G. et al. // Microporous Mesoporous Mater. 2021. V. 310. № 110584. https://doi.org/10.1016/j.micromeso.2020.110584
  14. Bagtache R., Meziani D., Abdmeziem K., Trari M. // J. Mol. Struct. 2021. V. 1227. № 129718. https://doi.org/10.1016/j.molstruc.2020.129718
  15. Kong H., He P., Yang Z. et al. // Dalt. Trans. 2020. V. 49. P. 7420. https://doi.org/10.1039/D0DT00444H
  16. Wang Y., Li F., Jiang N. et al. // Dalt. Trans. 2019. V. 48. P. 14347. https://doi.org/10.1039/C9DT02789K
  17. Keshavarz M., Iravani N., Parhami A. // J. Mol. Struct. 2019. V. 1189. P. 272. https://doi.org/10.1016/j.molstruc.2019.04.027
  18. Azuma S., Kadoguchi T., Eguchi Y. et al. // Dalt. Trans. 2020. V. 49. P. 2766. https://doi.org/10.1039/c9dt04737a
  19. Zhao P., Wang J., Chen G. et al. // Catal. Sci. Technol. 2013. V. 3. P. 1394. https://doi.org/10.1039/C3CY20796J
  20. Nakamura I., Miras H.N., Fujiwara A. et al. // J. Am. Chem. Soc. 2015. V. 137. № 20. P. 6524. https://doi.org/10.1021/ja512758j
  21. Kuleshov D.O., Kuleshova T.E., Bobkov D.E. et al. // Nauchnoe Priborostr. 2018. V. 28. № 3. P. 72. https://doi.org/10.18358/np-28-3-i7283
  22. Salionov D., Ludwig C., Bjelić S. // J. Am. Soc. Mass Spectrom. 2022. V. 33. № 6. P. 932. https://doi.org/10.1021/jasms.1c00377
  23. Karas M., Krüger R. // Chem. Rev. 2003. V. 103. № 2. P. 427. https://doi.org/10.1021/cr010376a
  24. Полунина И.А., Полунин К.Е., Буряк А.К. // Коллоид. журн. 2020. Т. 82. № 6. С. 715–724. [Polunina I.A., Polunin K.E., Buryak A.K. // Colloid J. 2020. V. 82. P. 696. https://doi.org/10.1134/S1061933X20060095]
  25. Il’in E.G., Parshakov A.S., Buryak A.K. // Int. J. Mass Spectrom. 2020. V. 458. № 116448. https://doi.org/10.1016/j.ijms.2020.116448
  26. Matsuo Y., Kanaoka S., Aoshima S. // Kobunshi Ronbunshu. V. 2011. V. 68. P. 176. https://doi.org/10.1295/koron.68.176
  27. Yokoyama A., Kojima T., Ohkubo K., Fukuzumi S. // Inorg. Chem. 2010. V. 49. № 23. P. 11190. https://doi.org/10.1021/ic1019586
  28. Yokoyama A., Kojima T., Fukuzumi S. // Dalt. Trans. 2011. V. 40. P. 6445. https://doi.org/10.1039/C0DT01708F
  29. Boulicault J.E., Alves S., Cole R.B. // J. Am. Soc. Mass Spectrom. 2016. V. 27. P. 1301. https://doi.org/10.1007/s13361-016-1400-6
  30. Ali-Zade A.G., Buryak A.K., Zelikman V.M. et al. // New J. Chem. 2020. V. 44. P. 6402. https://doi.org/10.1039/C9NJ05403K
  31. Baker L.C.W., Glick D.C. // Chem. Rev. 1998. V. 98. P. 3. https://doi.org/10.1021/cr960392l
  32. Gumerova N.I., Rompel A. // Nat. Rev. Chem. 2018. V. 2. № 0112. P. 1. https://doi.org/10.1038/s41570-018-0112
  33. Gavrilova N., Myachina M., Dyakonov V. et al. // Nanomater. 2020. V. 10. P. 2428. https://doi.org/10.3390/nano10102053
  34. Das L., Ray S., Raha S. et al. // Colloids Surf. A Physicochem. Eng. Asp. 2021. V. 611. № 125808. https://doi.org/10.1016/j.colsurfa.2020.125808
  35. Wei W., Xin Z., Shi H.-T. et al. // Zeitschrift fur Naturforsch. Sect. B J. Chem. Sci. 2015. V. 70. № 8. P. 537. https://doi.org/10.1515/znb-2014-0256
  36. Lü H., Ren W., Liao W. et al. // Appl. Catal. B Environ. 2013. V. 138–139. P. 79. https://doi.org/10.1016/j.apcatb.2013.02.034

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Mass spectra of initial (a, b) and reduced (c, d) forms of phosphoromolybdenum acid at registration of negative (a, c) and positive (b, d) ions

下载 (292KB)
3. Fig. 2. Mass spectrum of particle (MoO3)6. The peak range is 847.4-882.5 Da, with a maximum peak value of m/z = 862.8 Da

下载 (111KB)
4. Fig. 3. Mass spectra of phosphoromolybdenoic acid in negative (a) and positive (b) ion detection mode in the range of 1500-3000 Da

下载 (117KB)
5. Fig. 4. Dependence of peak intensity in the mass spectrum on laser power at the number of pulses 50

下载 (112KB)

版权所有 © Russian Academy of Sciences, 2024