Перестройка конформаций полиамфолитных макромолекул на поверхности заряженной сферической металлической наночастицы в переменном электрическом поле: молекулярно-динамическое моделирование

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследована перестройка конформационной структуры полиамфолитных полипептидов на поверхности заряженной сферической золотой наночастицы при периодическом изменении во времени ее полярности с использованием молекулярно-динамического моделирования. Рассчитаны угловые распределения атомов полипептида, а также радиальные распределения плотности атомов макроцепи в экваториальной области наночастицы с дифференциацией по типам звеньев. Полиамфолитная оболочка приобретала кольцеобразную форму, а образовавшееся макромолекулярное кольцо располагалось вокруг заряженной наночастицы перпендикулярно вектору напряженности внешнего электрического поля. При увеличении заряда наночастицы опоясывающая опушка упорядочивалась по типам звеньев макроцепи, образуя концентрические кольцеобразные слои. При этом диаметр кольцеобразной макромолекулярной опушки зависел от закона распределения заряженных звеньев в макроцепи. При повышении температуры наблюдалась деформация кольцеобразной макромолекулярной опушки в моменты времени наибольшей поляризации наночастицы.

Об авторах

Н. Ю. Кручинин

Оренбургский государственный университет, Центр лазерной и информационной биофизики

Автор, ответственный за переписку.
Email: kruchinin_56@mail.ru
Россия, Оренбург

Список литературы

  1. Shahdeo D., Kesarwani V., Suhag D. et al. // Carbohydrate Polymers. 2021. V. 266. P. 118138. https://doi.org/10.1016/j.carbpol.2021.118138
  2. Li X., Zhang M., Zhou X., Hu J. // Analytical Biochemistry. 2021. V. 631. P. 114369. https://doi.org/10.1016/j.ab.2021.114369
  3. Chakraborty K., Biswas A., Mishra S. et al. // ACS Appl. Bio Mater. 2023. V. 6. P. 458. https://doi.org/10.1021/acsabm.2c00726
  4. Knittel L.L., Zhao H., Nguyen A. et al. // J. Phys. Chem. B. 2020. V. 124. P. 3892. https://doi.org/10.1021/acs.jpcb.0c01444
  5. Retout M., Cornelio B., Bruylants G., Jabin I. // Langmuir. 2022. V. 38. P. 9301. https://doi.org/10.1021/acs.langmuir.2c01122
  6. Zanetti-Polzi L., Charchar P., Yarovsky I., Corni S. // ACS Nano. 2022. V. 16. P. 20129. https://doi.org/10.1021/acsnano.2c04335
  7. Jha S., Ramadori F., Quarta S. et al. // Bioconjugate Chemistry. 2016. V. 28. P. 222. https://doi.org/10.1021/acs.bioconjchem.6b00441
  8. Khlebtsov B.N., Khanadeev V.A., Burov A.M. et al. // J. Phys. Chem. C. 2020. V. 124. P. 10647. https://doi.org/10.1021/acs.jpcc.0c00991
  9. Silva F., Zambre A., Campello M.P.C. et al. // Bioconjugate Chemistry. 2016. V. 27. P. 1153. https://doi.org/10.1021/acs.bioconjchem.6b00102
  10. Liu B., Liu J. // Matter. 2019. V. 1. P. 825. https://doi.org/10.1016/j.matt.2019.08.008
  11. Wang X., Ham S., Zhou W., Qiao R. // Journal: Nanotechnology. 2023. V. 34. P. 025501. https://doi.org/10.1088/1361-6528/ac973b
  12. Dongying Q., Lan L., Qian D. // Process Biochemistry. 2020. V. 98. P. 51. https://doi.org/10.1016/j.procbio.2020.07.019
  13. Sokolov P.A., Ramasanoff R.R., Gabrusenok P.V. et al. // Langmuir. 2022. V. 38. P. 15776. https://doi.org/10.1021/acs.langmuir.2c02668
  14. Kruchinin N.Yu., Kucherenko M.G., Neyasov P.P. // Rus. J. of Physical Chemistry A. 2021. V. 95. № 2. P. 362. https://doi.org/10.1134/S003602442102014X
  15. Kruchinin N.Yu., Kucherenko M.G. // Surfaces and Interfaces. 2021. V. 27. P. 101517. https://doi.org/10.1016/j.surfin.2021.101517
  16. Kruchinin N.Yu., Kucherenko M.G. // Colloid Journal. 2021. V. 83. № 5. P. 591. https://doi.org/10.1134/S1061933X21050070
  17. Kruchinin N.Yu., Kucherenko M.G. // Rus. J. of Phys. Chem. A. 2022. V. 96. № 3. P. 622. https://doi.org/10.1134/S0036024422030141
  18. Kucherenko M.G., Kruchinin N.Yu., Neyasov P.P. // Eurasian Physical Technical Journal. 2022. V. 19. № 2 (40). P. 19–29. https://doi.org/10.31489/2022No2/19-29
  19. Kruchinin N.Yu., Kucherenko M.G. // Colloid Journal. 2021. V. 83. № 1. P. 79. https://doi.org/10.1134/S1061933X20060083
  20. Kruchinin N.Yu. // Ibid. 2021. V. 83. № 3. P. 326. https://doi.org/10.1134/S1061933X2102006X
  21. Kruchinin N.Yu., Kucherenko M.G. // Colloid Journal. 2020. V. 82. № 4. P. 392. https://doi.org/10.1134/S1061933X20040067
  22. Kruchinin N.Yu., Kucherenko M.G. // Eurasian Physical Technical Journal. 2021. V. 18. № 1. P. 16. https://doi.org/10.31489/2021No1/16-28
  23. Kruchinin N.Yu., Kucherenko M.G. // High Energy Chemistry. 2021. V. 55. № 6. P. 442. https://doi.org/10.1134/S0018143921060084
  24. Kruchinin N.Yu., Kucherenko M.G. // High Energy Chemistry. 2022. V. 56. № 6. P. 499. https://doi.org/10.1134/S0018143922060108
  25. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. М.: Наука, 1982.
  26. Phillips J.C., Braun R., Wang W. et al. // J. Comput. Chem. 2005. V. 26. P. 1781. https://doi.org/10.1002/jcc.20289
  27. MacKerell A.D. Jr., Bashford D., Bellott M. et al. // J. Phys. Chem. B. 1998. V. 102. P. 3586. https://doi.org/10.1021/jp973084f
  28. Huang J., Rauscher S., Nawrocki G. et al. // Nature Methods. 2016. V. 14. P. 71. https://doi.org/10.1038/nmeth.4067
  29. Heinz H., Vaia R.A., Farmer B.L., Naik R.R. // J. Phys. Chem. C. 2008. V. 112. P. 17281. https://doi.org/10.1021/jp801931d
  30. Cappabianca R., De Angelis P., Cardellini A. et al. // ACS Omega. 2022. V. 7. P. 42292. https://doi.org/10.1021/acsomega.2c05218
  31. Wei X., Harazinska E., Zhao Y. et al. // J. Phys. Chem. C. 2022. V. 126. P. 18511. https://doi.org/10.1021/acs.jpcc.2c05816
  32. Dutta S., Corni S., Brancolini G. // Int. J. Mol. Sci. 2021. V. 22. P. 3624. https://doi.org/10.3390/ijms22073624
  33. Kariuki R., Penman R., Bryant S.J. et al. // ACS Nano. 2022. V. 16. P. 17179. https://doi.org/10.1021/acsnano.2c07751
  34. Farhadian N., Kazemi M.S., Baigi F.M., Khalaj M. // J. of Molecular Graphics and Modelling. 2022. V. 116. 2022. P. 108271. https://doi.org/10.1016/j.jmgm.2022.108271
  35. Wei X., Popov A., Hernandez R. // ACS Appl. Mater. Interfaces. 2022. V. 14. P. 12538. https://doi.org/10.1021/acsami.1c24526
  36. Salassi S, Caselli L., Cardellini J. et al. // J. Chem. Theory Comput. 2021. V. 17. P. 6597. https://doi.org/10.1021/acs.jctc.1c00627
  37. Riccardi L., Decherchi S., Rocchia W. et al. // J. Phys. Chem. Lett. 2021. V. 12. P. 5616. https://doi.org/10.1021/acs.jpclett.1c01365
  38. Li Z., Ruiz V.G., Kanduč M., Dzubiella J. // Langmuir. 2020. V. 36. P. 13457. https://doi.org/10.1021/acs.langmuir.0c02097
  39. Avila-Salas F, González R.I., Ríos P.L. et al. // J. Chem. Inf. Model. 2020. V. 60. P. 2966. https://doi.org/10.1021/acs.jcim.0c00052
  40. Darden T., York D., Pedersen L. // J. Chem. Phys. 1993. V. 98. P. 10089. https://doi.org/10.1063/1.464397
  41. Jorgensen W.L., Chandrasekhar J., Madura J.D. et al. // Ibid. 1983. V. 79. P. 926. https://doi.org/10.1063/1.445869
  42. Shankla M., Aksimentiev A. // Nature Communications. 2014. V. 5. P. 5171. https://doi.org/10.1038/ncomms6171
  43. Chen P., Zhang Z., Gu N., Ji M. // Molecular Simulation. 2018. V. 44. P. 85. https://doi.org/10.1080/08927022.2017.1342118

Дополнительные файлы


© Н.Ю. Кручинин, 2023