Express Search and Characterization of Nitro Compounds via Visualization Mass Spectrometry

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The authors describe a way of detecting nitro and amino compounds using a mass spectrometer with laser desorption/ionization. This allows analysis of nitro- and amino compounds from a metal surface without sample preparation at levels of up to 5 ng/cm2 relative to paracetamol. Sensitivity is at the level of modern means of analysis, and the procedure is simple and fast. It is also universal and can be modified to search for other nitro- and amino compounds. Pointwise quantitative analysis can be done using an external standard. The dynamic range is 1.5–2 orders of magnitude. The technique can be used to analyze metal surfaces for nitro-paint residues and traces of explosive compounds.

About the authors

I. S. Pytskii

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: suhorukov1010@mail.ru
119071, Moscow, Russia

E. S. Kuznetsova

Frumkin Institute of Physical Chemistry and Electrochemistry

Email: ivanpic4586@gmail.com
119991, Moscow, Russia

A. K. Buryak

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Author for correspondence.
Email: suhorukov1010@mail.ru
119071, Moscow, Russia

References

  1. Caulkins J.P., Gould A., Pardo B. et al. // Annu. Rev. Criminol. 2021. V. 4. P. 353–375.
  2. Galante N., Franceschetti L., Del Sordo S. // Forensic Sci. Med. Pathol. 2021. V. 17. № 3. P. 437–448.
  3. Lehmann E.L., Arruda M.A.Z. // Anal. Chim. Acta. 2019. V. 1063. P. 9–17.
  4. Cunha R.L., Oliveira C.D.S.L., de Oliveira A.L. et al. // Microchem. J. 2021. V. 163. P. 105895.
  5. Suppajariyawat P., Gonzalez-Rodriguez J. // Sci. Justice. 2021. V. 61. № 6. P. 697–703.
  6. Ryan D.J., Spraggins J.M., Caprioli R.M. et al. // Curr. Opin. Chem. Biol. 2019. V. 48. P. 64–72.
  7. Morisasa M., Sato T., Kimura K. et al. // Foods. 2019. V. 8. № 12. P. 633.
  8. Spraggins J.M., Djambazova K.V., Rivera E.S. et al. // Anal. Chem. 2019. V. 91. № 22. P. 14552–14560.
  9. Lee P.Y., Yeoh Y., Omar N. et al. // Crit. Rev. Clin. Lab. Sci. 2021. V. 58. № 7. P. 513–529.
  10. Basu S.S., Regan M.S., Randall E.C. et al. // NPJ Precis. Oncol. 2019. V. 3 № 1. P. 17.
  11. Iartsev S.D., Matyushin D.D., Pytskii I.S. et al. // Surf. Innov. 2018. V. 6. № 4–5. P. 244–249.
  12. Pytskii I.S., Kuznetsova E.S., Buryak A.K. // Russ. J. Phys. Chem. A. 2022. V. 96. № 5. P. 1070–1076.
  13. Pytskii I.S., Minenkova I.V., Kuznetsova E.S. et al. // Pure Appl. Chem. 2020. V. 92. № 8. P. 1227–1237.
  14. Hoong Y.B., Pizzi A., Chuah L.A. Harun J. // Int. J. Adhes. Adhes. 2015. V. 63. P. 117–123.
  15. Pytskii I.S., Kuznetsova E.S., Buryak A.K. // Russ. J. Phys. Chem. A. 2021. V. 95. P. 2319–2324.
  16. Wang X., Liu Y., Wang Q. et al. // Spectrochim. 2021. V. 244. P. 118876.
  17. Wang J., Qiu C., Mu X. et al. // Talanta. 2020. V. 210. P. 120631.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (5KB)
3.

Download (7KB)
4.

Download (7KB)
5.

Download (9KB)
6.

Download (8KB)
7.

Download (264KB)
8.

Download (113KB)

Copyright (c) 2023 И.С. Пыцкий, Е.С. Кузнецова, А.К. Буряк