Luminescence Properties of Mixed-Ligand Neodymium(III) Quinaldinates

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Complex compounds of neodymium(III) with a quinaldic acid anion and nitrogen- and phosphorus-containing neutral ligands have been synthesized. The mixed-ligand compounds were characterized by elemental and X-ray diffraction analysis and IR spectroscopy. The thermal behavior of the obtained compounds was studied by thermal analysis in air in the temperature range 25–700°C. During the thermolysis of the complexes, the neutral ligand molecule is eliminated in one stage with an endothermic effect; the compounds are thermally stable up to 250°C. It was established by IR spectroscopy that in mixed-ligand neodymium(III) quinaldinates, the acid anion is coordinated to the central neodymium(III) ion as a bridging bidentate ligand. The luminescence properties of neodymium(III) quinaldinates were studied.

Sobre autores

I. Kalinovskaya

Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 690022, Vladivostok, Russia

Autor responsável pela correspondência
Email: acjournal.nauka.nw@yandex.ru
Россия, 690022, Владивосток

Bibliografia

  1. Smola S., Rusakova N., Korovin Yu. // J. Coord. Chem. 2011. V. 64. № 5. P. 863.
  2. Werts M.H.V., Woudenberg R.H., Emmerink P.G. et al. // Angew. Chem. Int. Ed. 2000. V. 39. № 24. P. 4542.
  3. Петроченкова Н.В., Мирочник А.Г. // Оптика и спектр. 2020. Т. 128. № 1. С. 140.https://doi.org/10.21883/OS.2020.01.48851.246-19
  4. Binnemans K. // Chem. Rev. 2020. V. 109. № 9. P. 4283.https://doi.org/10.1021/cr8003983
  5. Каплин В.С., Копылов А.С., Зархина Т.С. и др. // Оптика и спектр. 2020. Т. 128. № 7. С. 869.https://doi.org/10. 21883/ OS.2020.07.
  6. Kuchmizhak A., Vitrik O., Kulchin Y. et al. // Nanoscale. 2016. V. 8. № 24. P. 12352. https://doi.org/10.1039/c6nr01317a
  7. Мартынов А.Г., Cафонова Е.А., Горбунова Ю. и др. // ЖНХ. 2010. Т. 55. С. 389.https://doi.org/10.1134/S0036023610030083
  8. Калиновская И.В., Николенко Ю.М. // Оптика и спектроскопия, 2018. Т. 125. № 3. С. 344. https://doi.org/10.1134/S0030400X18090126
  9. Коровин Ю.В., Шевчук С.В., Бачериков В.А. и др. // ЖНХ. 2000. Т. 45. № 9. С. 1513.
  10. Мешкова С.Б., Дога П.Г. // ЖАХ. 2020. Т. 75. № 3. С. 209–229.https://doi.org/10.31857/S0044450220030147
  11. Коровин Ю.В. // Укр. хим. журн. 2000. Т. 66. № 10. С. 101.
  12. Калиновская И.В., Задорожная А.Н., Николенко Ю.М. и др. // ЖНХ. 2006. Т. 51. № 3. С. 505.https://doi.org/10.1134/S0036023606030181
  13. Калиновская И.В., Задорожная А.Н. // Оптика и спектр. 2019. Т. 127. № 5. С. 765.https://doi.org/10.21883/OS.2019.11.48512
  14. Lam A.W.H., Wong W.T., Gao S. et al. // Eur. J. Inorg. Chem. 2003. № 1. P. 149.https://doi.org/10.1002/ejic.200390021
  15. Kataoka H., Kitano T., Takizawa T. et al. // J. Alloys Compd. 2014. V. 601. P. 293. https://doi.org/10.1016/j.jallcom.2014.01.165
  16. Zhang J., Wang R., Bai J., and Wang S. // J. Rare Earths. 2002. V. 20. № 5. P. 449.
  17. Utochnikova V., Kovalenko A., Burlov A. et al. // Dalton Trans 2015, 44:12660-12669. https://doi.org/10.1039/C5DT01161B
  18. Zhang J., Wang R., Liu H.-M. // J. Therm. Anal. Cal. 2001. V. 66. P. 431.https://doi.org/10.1023/A:1013186600293
  19. Starynowicz P. // Acta Cryst. 1990. V. 46. P. 2068.
  20. Bukvetskii B.V., Kalinovskaya I.V. // J. Fluoresc. 2017. V. 27. № 3. P. 773.https://doi.org/10.1007/s10895-016-2009-7
  21. Калиновская И.В., Карасев В.Е. // ЖНХ. 2003. Т. 48. № 8. С. 1307.
  22. Калиновская И.В., Карасев В.Е., Зайцева Н.Н. // Там же. 1989. Т. 34. № 3. С. 1515.
  23. Zolin V.F. // J. Alloys Compd. 2004. V. 380. № 1–2. P. 101.https://doi.org/10.1016/j.jallcom.2004.03.006
  24. Золин В.Ф., Коренева Л.Г. Редкоземельный зонд в химии и биологии. М.: Наука, 1980. 350 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (376KB)
3.

Baixar (91KB)
4.

Baixar (54KB)

Declaração de direitos autorais © И.В. Калиновская, 2023