Фазовые равновесия в системе Na+, K+// Cl–, NO3– – H2O вблизи температур кипения. I. Моделирование трёхкомпонентных систем
- Авторлар: Мамонтов М.Н.1, Курдакова С.В.1, Успенская И.А.1
-
Мекемелер:
- Московский государственный университет им. М. В. Ломоносова
- Шығарылым: Том 98, № 9 (2024)
- Беттер: 140-145
- Бөлім: 100-ЛЕТИЮ ЛАБОРАТОРИИ ХИМИЧЕСКОЙ ТЕРМОДИНАМИКИ МГУ
- ##submission.dateSubmitted##: 23.03.2025
- ##submission.datePublished##: 30.12.2024
- URL: https://medjrf.com/0044-4537/article/view/677642
- DOI: https://doi.org/10.31857/S0044453724090197
- EDN: https://elibrary.ru/OMMLKI
- ID: 677642
Дәйексөз келтіру
Аннотация
Проведена частичная реоптимизация параметров модели Wang-Gruszkiewicz, позволившая описать фазовые равновесия в граничных тройных системах, образующих взаимную систему Na+, K+// Cl–, NO3– – H2O, вблизи температур кипения. Определены области устойчивости жидкой фазы, т. е. составы растворов, при кипении которых не происходит выделение твердой фазы. Показано, что в системе NaNO3–KNO3–H2O при определенных соотношениях количеств нитратов натрия и калия давление пара воды над насыщенными растворами будет равно атмосферному при двух различных температурах.
Толық мәтін

Авторлар туралы
М. Мамонтов
Московский государственный университет им. М. В. Ломоносова
Хат алмасуға жауапты Автор.
Email: mmn@td.chem.msu.ru
химический факультет
Ресей, МоскваС. Курдакова
Московский государственный университет им. М. В. Ломоносова
Email: mmn@td.chem.msu.ru
химический факультет
Ресей, МоскваИ. Успенская
Московский государственный университет им. М. В. Ломоносова
Email: mmn@td.chem.msu.ru
химический факультет
Ресей, МоскваӘдебиет тізімі
- Carroll S., Craig L., Wolery T.J. // Geochem. Trans. 2005. V.6.№ 2. P. 19. doi: 10.1186/1467-4866-6-19.
- Rard J.A. // Report UCRL-TR-207054 (Lawrence Livermore National Laboratory, Livermore, California), 2004.
- Rard J.A. Report UCRL-TR-217415 (Lawrence Livermore National Laboratory, Livermore, California), 2005.
- Rard J.A., Staggs K.J., Day S. Dan, Carroll S.A. // J. Solution Chem. 2006. V.35. P. 1187. doi: 10.1007/s10953-006-9049-6
- Zhu L., Ma Y.L., Ge S.Y., Wang Y.Y. // J. Chem. Thermod. 2022. V.165. P. 106658. doi: 10.1016/j.jct.2021.106658
- Shen W., Ren Y., Sun J. // Fluid Phase Equilibria. 2016. V.429. P. 196. doi: 10.1016/j.fluid.2016.09.005
- Cao J., Ren Y., Yu B., et al // J. Chem. Thermodyn. 2019. V.133. P. 181. doi.org/10.1016/j.jct.2019.04.008
- Румянцев А.В., Гурьева А.А., Герман В.П. // Журн.физ.химии. 2023. Т. 97. № 8. С. 1111. doi: 10.31857/S0044453723080228
- Чарыков Н.А., Гурьева А.А., Герман В.П. и др. // Там же. 2023. Т. 97. № 7. С. 965. doi: 10.31857/S0044453723070051
- Danielik V., Fellner P., Jurišová J., Králik M.// J. Mol. Liquids. 2014. V.191. P. 111. doi: 10.1016/j.molliq.2013.12.004
- Wang P., Anderko A., Young R.D. // Fluid Ph. Eq. 2002. V.203. P. 141. doi: 10.1016/s0378-3812(02)00178-4
- Gruszkiewicz M.S., Palmer D.A., Springer R.D., et al. // J. Sol. Chem. 2007. V.36. P. 723 doi: 10.1007/s10953-007-9145-2
- Pitzer K.S. // J. Phys. Chem. 1973. V. 77. № 2. P. 268. doi: 10.1021/j100621a026
- Pitzer K.S., Mayorga G. // J. Phys. Chem. 1973. V. 77. № 19. P. 2300. doi: 10.1021/j100638a009
- Rodriguez C, Prugger K, Millero F.J. // J. Chem. Eng. Data. 2013. V.58. P. 1833. doi: 10.1021/je4002398
- Bradley D.J., Pitzer K.S. // J. Phys. Chem. 1979. V.83. № 12. P. 1599. doi: 10.1021/j100475a009
- Термодинамические свойства индивидуальных веществ. Справ. издание (ред. Глушко В.П.), М.: Наука, 1978
- Wagman D.D., Evans W.H., Parker V.B., et al // J. Phys. Chem. Ref. Data. 1982. V.11. suppl. 2. doi: 10.1063/1.555845
Қосымша файлдар
