Mechanisms of production and death of singlet oxygen and ozone in fast-flow O/O2/N2 gas mixtures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The experimental results of measurements of concentrations of O2(a1Δg) and O2(b1Σg+) in a fast-flow gas system with no plasma-chemical processes involving electrons and ions are described using a numerical spatially two-dimensional model. The dependences of O2(a1Δg) and O2(b1Σg+) concentration profiles on the gas pressure, the fraction of O atoms in O/N2 mixtures, and O2 additions to the gas mixture are obtained. The need to take into account the detailed vibrational kinetics of ozone and the processes of its formation on the tube surface in the model is shown. The treatment of the reaction of three-body recombination of O atoms on M = N2, O2 taking into account the reverse dissociation reaction of the formed highly excited molecule is proposed, and the functional dependence of the resulting coefficient krec(T)—the rate of three-body recombination is obtained, which agrees well with the measured temperature dependences krec(T). The channels of further relaxation of the formed excited molecules and oxygen atoms are obtained.

Full Text

Restricted Access

About the authors

Yu. A. Mankelevich

M. V. Lomonosov Moscow State University, D. V. Skobeltsyn Institute of Nuclear Physics

Author for correspondence.
Email: ymankelevich@mics.msu.su
Russian Federation, Moscow

T. V. Rakhimova

M. V. Lomonosov Moscow State University, D. V. Skobeltsyn Institute of Nuclear Physics

Email: ymankelevich@mics.msu.su
Russian Federation, Moscow

D. G. Voloshin

M. V. Lomonosov Moscow State University, D. V. Skobeltsyn Institute of Nuclear Physics

Email: ymankelevich@mics.msu.su
Russian Federation, Moscow

A. A. Chukalovskii

M. V. Lomonosov Moscow State University, D. V. Skobeltsyn Institute of Nuclear Physics

Email: ymankelevich@mics.msu.su
Russian Federation, Moscow

References

  1. Kaufmann M., Gil-López S., López-Puertas M. et al. // J. of Atmospheric and Solar-Terrestrial Physics. 2006. V. 68. № 2. P. 202.
  2. Vlasov M., Klopovsky K., Lopaev D. et al. // Cosmic Research. 1997. V. 35. № 3. P. 219.
  3. Azyazov V.N., Heaven M.C. // Intern. J. of Chemical Kinetics. 2014. V. 47. № 2. P. 93.
  4. Torbin A.P., Mikheyev P.A., Pershin A.A. et al. // ”Molecular singlet delta oxygen quenching kinetics in the EOIL system” SPIE Proceedings 2015/02/03 2015.
  5. Lopaev D.V., Malykhin E.M., Zyryanov S.M. // J. of Physics D: Applied Physics. 2010. V. 44. № 1. P. 015202.
  6. Marinov D., Guerra V., Guaitella O. et al. // Plasma Sources Science and Technology. 2013. V. 22. № 5. P. 055018.
  7. Ellerweg D., von Keudell A., Benedikt J. // Ibid. 2012. V. 21. № 3. P. 034019.
  8. Klopovskii K., Kovalev A., Lopaev D. et al. // J. of Experimental and Theoretical Physics – J EXP THEOR PHYS. 1995. V. 80. P. 603.
  9. Klopovskii K., Popov N., Proshina O. et al. // Plasma Physics Reports. 1997. V. 23. P. 165.
  10. Kogelschatz U. // Plasma Chemistry and Plasma Processing. 2003. V. 23. № 1. P. 1.
  11. Самойлович В.Г., Гибалов В.И., Козлов К.В. Физическая химия барьерного разряда. Москва: Издательство Московского Университета, 1989.
  12. Mikheyev P.A., Demyanov A.V., Kochetov I.V. et al. // Plasma Sources Science and Technology. 2020. V. 29. № 1. P. 015012.
  13. Зосимов А.В., Лунин В.В., Самойлович В.Г. et al. // Журн. физ. химии. 2016. V. 90. № 8. P. 1279.
  14. Манкелевич Ю.А., Поройков А.Ю., Рахимова Т.В. et al. // Журн. физ. химии. 2016. V. 90. № 9. P. 1421.
  15. Манкелевич Ю.А., Воронина Е.Н., Поройков А.Ю. et al. // Физика плазмы. 2016. V. 42. № 10. P. 912.
  16. Торбин А.П., Першин А.А., Азязов В.Н. // Физика и электроника. Изв. Самарского научн. центра РАН. 2014. V. 16. № 4. P. 17.
  17. Першин А.А., Торбин А.П., Хэвен М. et al. // Краткие сообщения по физике Физического института им. П.Н. Лебедева Российской Академии Наук. 2015. V. 12. P. 74.
  18. Azyazov V.N., Mikheyev P., Postell D. et al. // Chemical Physics Letters. 2009. V. 482. № 1–3. P. 56–61.
  19. Ali A.A., Ogryzlo E.A., Shen Y.Q. et al. // Canadian J. of Physics. 1986. V. 64. № 12. P. 1614.
  20. Ogryzlo E.A., Shen Y.Q., Wassell P.T. // Journal of Photochemistry. 1984. V. 25. № 2–4. P. 389.
  21. Yankovsky V. // Advances in Space Research. 2021. V. 67. № 3. P. 921.
  22. Лунин В.В., Попович М.П., Ткаченко С.Н. Физическая химия озона. Москва: Изд-во Московского Университета, 1998. 478 p.
  23. Манкелевич Ю.А., Рахимова Т.В., Волошин Д.Г. et al. // Журн. физ. химии. 2023. V. 97. № 5. P. 747.
  24. Booth J.P., Chatterjee A., Guaitella O. et al. // Plasma Sources Sci. Technol. 2022. V. 31. № 6. P. 065012.
  25. Mankelevich Y.A., Rakhimov A.T., Suetin N.V. // Diamond and Related Materials. 1995. V. 4. № 8. P. 1065.
  26. Mankelevich Y.A., Ashfold M.N.R., Ma J. // J. of Applied Physics. 2008. V. 104. № 11. P. 113304.
  27. Braginskiy O.V., Vasilieva A.N., Klopovskiy K.S. et al. // J. of Physics D: Applied Physics. 2005. V. 38. № 19. P. 3609.
  28. Booth J.P., Guaitella O., Zhang S. et al. // Plasma Sources Science and Technology. 2023. V. 32. № 9. P. 095016.
  29. Campbell I.M., Thrush B.A. // Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 1967. V. 296. № 1445. P. 222.
  30. Slanger T.G., Copeland R.A. // Chemical Reviews. 2003. V. 103. № 12. P. 4731.
  31. Esposito F., Armenise I., Capitta G. et al. // Chemical Physics. 2008. V. 351. № 1–3. P. 91.
  32. Manion J.A., Huie R.E., Levin R.D. et al. //NIST Chemical Kinetics Database, NIST Standard Reference Database 17, Version 7.0 (Web Version), Release 1.6.8, Data version 2015.09: National Institute of Standards and Technology, Gaithersburg, Maryland, 20899–8320 2015.
  33. Campbell I.M., Gray C.N. // Chemical Physics Letters. 1973. V. 18. № 4. P. 607.
  34. Pejaković D.A., Kalogerakis K.S., Copeland R.A. et al. // J. of Geophysical Research: Space Physics. 2008. V. 113. № A4. P. A04303.
  35. Huestis D.L. // Atmospheres in the Solar System: Comparative Aeronomy. 2002. P. 245.
  36. Zagidullin M.V., Khvatov N.A., Medvedkov I.A. et al. // J. of Phys. Chem. A. 2017. V. 121. № 39. P. 7343.
  37. Wayne R.P. //Singlet Molecular Oxygen Advances in Photochemistry: Wiley 1969.Р.311.
  38. Stott I.P., Thrush B.A. // Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences. 1989. V. 424. № 1866. P. 1.
  39. Vasiljeva A.N., Klopovskiy K.S., Kovalev A.S. et al. // J. of Physics D: Applied Physics. 2004. V. 37. № 17. P. 2455.
  40. МакИвен М., Филлипс Л. Химия атмосферы. Москва: Мир, 1978. 375 p.
  41. Atkinson R., Welge K.H. // J. of Chemical Physics. 1972. V. 57. № 9. P. 3689.
  42. Slanger T.G., Black G. // J of Chem. Physics. 1976. V. 64. № 9. P. 3763.
  43. London G., Gilpin R., Schiff H.I. et al. // Ibid. 1971. V. 54. № 10. P. 4512.
  44. Dunlea E.J., Ravishankara A. // Physical Chemistry Chemical Physics. 2004. V. 6. № 9. P. 2152.
  45. Capitelli M., Ferreira C.M., Gordiets B.F. et al. //Plasma Kinetics in Atmospheric Gases Springer Series on Atomic, Optical, and Plasma Physics: Springer Berlin Heidelberg 2000.
  46. Yee J.H., Guberman S.L., Dalgarno A. // Planetary and Space Science. 1990. V. 38. № 5. P. 647.
  47. Slanger T.G., Black G. // The J. of Chemical Physics. 1979. V. 70. № 7. P. 3434.
  48. Hoskinson A.R., Rawlins W.T., Galbally-Kinney K.L. et al. // J. of Physics D: Applied physics. 2022. V. 55. № 12. P. 125208.
  49. Clark I.D., Wayne R.P. // Chemical Physics Letters. 1969. V. 3. № 6. P. 405.
  50. Baulch D.L., Cox R.A., Crutzen P.J. et al. // J. of Physical and Chemical Reference Data. 1982. V. 11. № 2. P. 327.
  51. Morin J., Bedjanian Y., Romanias M.N. // Intern. J. of Chemical Kinetics. 2016. V. 49. № 1. P. 53.
  52. Шефов Н.Н., Семенов А.И., Хомич В.Ю. Излучение верхней атмосферы – индикатор ее структуры и динамики. Москва: ГЕОС, 2006. 740 p.
  53. Kirillov A.S. // Chemical Physics Letters. 2014. V. 592. P. 103.
  54. Kenner R.D., Ogryzlo E.A. // Canadian J. of Physics. 1984. V. 62. № 12. P. 1599.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of the fast-flow gas system.

Download (40KB)
3. Fig. 2. Triple atom recombination coefficient on M=N2 as a function of gas temperature in the model and experiment using data from [33] and [29].

Download (178KB)
4. Fig. 3. Axial distributions of the tube diameter-averaged O2(a) concentrations in the 2D model and experiment [19] for different O2(X)-additions (in the axial region of the tube at z~15 cm) to the inlet flow of 0.11%O/N2 mixture, gas pressure in the tube pgas = 6 Torr.

Download (265KB)
5. Fig. 4. Axial (z, r=0.75) production velocity distributions (a) and O2(a) guideline for the mode with 0.25 Torr O2(X) added to the inlet flow of 0.11%O/N2 mixture, gas pressure in the tube pgas = 6 Torr.

Download (621KB)
6. Fig. 5. Component concentration distributions a) along the tube (along z for r=0.75 cm) and b) along the tube radius r for z=25 cm for the mode with 250 mTorr O2(X) added to the inlet flow of 0.11%O/N2 mixture, gas pressure in the tube pgas=6 Torr. The concentration of the main gas N2 is shown reduced by a factor of 100. The concentration of O(1d) is shown increased by a factor of 103.

Download (630KB)
7. Fig. 6. Axial distributions of the tube diameter-averaged O2(b) concentrations in the model and experiment [20] for different O2(X) additions (at z~15 cm) to the flow of 0.34%O/N2 mixture, tube gas pressure pgas=2.07 Torr.

Download (331KB)
8. Fig. 7. Distributions (z, r=0.75 cm) along the tube of production velocities (a) and gibli b) of O2(b) for the mode with 0.05 Torr O2(X) added to the flow of 0.34%O/N2 mixture, gas pressure in the tube pgas=2.07 Torr.

Download (578KB)
9. Fig. 8. Component concentration distributions a) along the tube (along z for r=0.75 cm) and b) along the tube radius r for z=25 cm for the mode with 0.05 Torr O2(X) added to the flow of 0.34%O/N2 mixture, gas pressure in the tube pgas=2.07 Torr. The concentration of the main gas N2 is given with a scaling factor of 100. The concentration of O(1d) is shown scaled up by a factor of 107.

Download (599KB)

Copyright (c) 2025 Russian Academy of Sciences