Heat capacity and thermodynamic functions of lutetium titanate Lu2Ti2O7

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The heat capacity of lutetium titanate was measured in the temperature range 2–1869 K and the smoothed temperature dependences of heat capacity entropy enthalpy changes and reduced Gibbs energy were calculated. The presence of a gentle anomaly in the heat capacity of Lu2Ti2O7 in the low temperature range was confirmed and its parameters were determined. Based on the calculated values of Gibbs energy thermodynamic stability in the studied temperature range was estimated.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

P. Gagarin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: gagarin@igic.ras.ru
Ресей, Leninsky prospect, 31, Moscow, 119991

A. Guskov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: gagarin@igic.ras.ru
Ресей, Leninsky prospect, 31, Moscow, 119991

V. Guskov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: gagarin@igic.ras.ru
Ресей, Leninsky prospect, 31, Moscow, 119991

A. Khoroshilov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: gagarin@igic.ras.ru
Ресей, Leninsky prospect, 31, Moscow, 119991

K. Gavrichev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: gagarin@igic.ras.ru
Ресей, Leninsky prospect, 31, Moscow, 119991

Әдебиет тізімі

  1. Knop O., Brisse F., Castelliz L. // Can. J. Chem. 1969. V. 47. P. 971. https://doi.org/10.1139/v69-155
  2. Subramanian M.A., Aravamudan G., Rao G.V.S. // Prog. Solid State Chem. 1983. V. 15. P. 55. https://doi.org/10.1016/0079-6786(83)90001-8
  3. Vassen R., Jarligo M.O., Steinke T., et al. // Surf. Coat. Technol. 2010. V. 205. P. 938. doi: 10.1016/j.surfcoat.2010.08.151
  4. Guo H., Zhang K., Li Y. // Ceram. Int. 2024. V. 50. P. 21859. https://doi.org/10.1016/j.ceramint.2024.03.298
  5. Steiner H.-J., Middleton P.H., Steele B.C.H. // J. Alloys Compd. 1993. V.190. P. 279. https://doi.org/10.1016/0925-8388(93)90412-G
  6. Bonville P., Petit S., Mirebeau I., et al. // J. Phys.: Cond. Matter. 2013. V. 25(27). P. 275601. doi: 10.1088/0953—8984/25/27/275601
  7. Kim H.G., Hwang D.W., Bae S.W., et al. // Catal. Lett. 2003. V. 91. P. 193. https://doi.org/10.1023/B: CATL.0000007154.30343.23
  8. Yadav P.K., Upadhyay Ch. // J. Supercond. Novel Magn. 2019. V. 32. P. 2267. https://doi.org/10.1007/s10948-018-4957-4
  9. Balachandran U., Eror N.G. // J. Mater. Res. 1989. V. 4(6). P. 1525. doi: 10.1557/JMR.1989.1525
  10. Johnson D.A., Westrum E.F., Jr. // Thermochim. Acta. 1994. V. 245. P. 173. https://doi.org/10.1016/0040-6031(94)85077-1
  11. Raju N.P., Dion M., Gingras M.J.P., et al. // Phys. Rev. B. 1999. V. 59(22). P. 14489. doi: https://doi.org/10.1103/PhysRevB.59.14489
  12. Ramirez A.P., Shastry B.S., Hayashi A., et al. // Phys. Rev. Lett. 2002. V. 89(6). P. 067202—1. doi: 10.1103/PhysRevLett.89.067202
  13. Saha S., Singh S., Dkhil B., et al. // Phys. Rev. B. 2008. V. 78. P. 214102. doi: 10.1103/PhysRevB.78.214102
  14. Bissengalieva M.R., Knyazev A.V., Bespyatov M.A., et al. // J. Chem. Thermodyn. 2022. V. 165. P. 106646. https://doi.org/10.1016/j.jct.2021.106646
  15. Dasgupta P., Jana Y.M., Nag Chattopadhyay A., et al. // J. Phys. Chem. Solids. 2007. V. 68. P. 347. https://doi.org/10.1016/j.jpcs.2006.11.022
  16. Gagarin P.G., Guskov A.V., Khoroshilov A.V., et al. // Russ. J. Phys. Chem. A. 2024. V. 98, No. 9. P. 1883. doi: 10.1134/S0036024424700973
  17. Denisova L.T., Chumilina L.G., Ryabov V.V., et al. // Inorg. Mater. 2019. V. 55. No. 5. P. 477. doi: 10.1134/S0020168519050029
  18. Helean K.B., Ushakov S.V., Brown C.E., et al. // J. Solid State Chem. 2004. V. 177. P. 1858. doi: 10.1016/j.jssc.2004.01.009
  19. Reznitskii L.A. // Neorg. Mater. 1993. V. 29 (9). P. 1310.
  20. Gagarin, P. G., Guskov, A. V., Guskov, et al. // Russ. J. of Inorganic Chemistry. https://doi.org/10.1134/S0036023624602046
  21. Rosen P.F., Woodfield B.F. // J. Chem. Thermodyn.2020. V. 141. P. 105974. doi: https://doi.org/10.1016/j.jct.2019.105974
  22. Bissengaliyeva M.R., Gogol D.B., Taymasova Sh.T., Bekturganov N.S. // J. Chem. Eng. Data. 2011. V. 56. P. 195—204. https://doi.org/10.1021/je100658y
  23. Prohaska T., Irrgeher J., Benefield J., et al. // Pure and Applied Chemistry. 2022. V. 94(5). P. 573. https://doi.org/10.1515/pac-2019-0603
  24. Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 16. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
  25. Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data 2013. V. 58. P. 2083. https://doi.org/10.1021/je400316m
  26. Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932. V. 54. P. 3243. https://doi.org/10.1021/ja01347a029.
  27. Leitner J., Voňka P., Sedmidubský D., Svoboda P. // Thermochim. Acta. 2010. V. 497. P. 7. doi: 10.1016/j.tca.2009.08.002
  28. Smith S.J., Stevens R., Liu Sh., et al. // Am. Mineral. 2009. V. 94. P. 236. doi: 10.2138/am.2009.3050236
  29. Konings R.J.M., Beneš O., Kovács A., et al. // J. Phys. Chem. Ref. Data. 2014. V. 43. P. 013101. doi: 10.1063/1.4825256
  30. Ryumin M.A., Tyurin A.V., Khoroshilov A.V., et al. // Russ. J. Inorg. Chem. 2024. doi: 10.1134/S0036023624601132.
  31. Westrum E.F. // J. Chem. Thermodynamics. 1983. V. 15. P. 305—325. https://doi.org/10.1016/0021-9614(83)90060-5
  32. Kitagawa K., Higashinaka R., Ishida K., et al. // Phys. Rev. B. 2008. V. 77. P. 214403. doi: 10.1103/PhysRevB.77.214403
  33. Gruber J., Chirico R.D., Westrum E.F., Jr. // J. Chem. Phys. 1982. V. 76(9). P. 4600—4605. https://doi.org/10.1063/1.443538
  34. Guskov A.V., Gagarin P.G., Guskov V.N., et al. // Russ. J. Phys. Chem. A. 2022. V. 96(9). P. 1831. doi: 10.1134/S003602442209014X
  35. Guskov A.V., Gagarin P.G., Guskov V.N., et al. // Dokl. Phys. Chem. 2021. V. 500. Part 2. P. 105—109. doi: 10.1134/S001250162110002X

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Diffraction pattern of a Lu2Ti2O7 sample with a pyrochlore structure.

Жүктеу (58KB)
3. Fig. 2. Surface morphology of a lutetium titanate sample.

Жүктеу (216KB)
4. Fig. 3. EDX spectrum of a lutetium titanate sample.

Жүктеу (133KB)
5. Fig. 4. Difference between experimental values ​​of heat capacity of Lu2Ti2O7 measured in STA 449F1 Jupiter and DSC404F1 Pegasus (Netzsch) installations.

Жүктеу (56KB)
6. Fig. 5. Comparison of the dependences of the high-temperature heat capacity of Lu2Ti2O7 obtained in this work (1) with the data of [17] (2) and the values ​​calculated according to the Neumann–Kopp rule (3).

Жүктеу (81KB)
7. Fig. 6. Excess heat capacity (a) and excess entropy (b) of Lu2Ti2O7 in the low temperature region.

Жүктеу (112KB)
8. Fig. 7. Temperature dependences of the enthalpy of formation ∆fHox and the Gibbs energy of formation from oxides according to reaction (5) in the high-temperature region: 1 – enthalpy of reaction, 2 – Gibbs energy of reaction.

Жүктеу (81KB)

© Russian Academy of Sciences, 2025