Квантово-химический расчет тензора магнитной восприимчивости кластеров диоксида титана

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Методом теории функционала плотности в приближении M06/6–31G(d, p) выполнен расчет равновесной геометрии, тензоров диамагнитной, парамагнитной и магнитной восприимчивости кластеров (TiO2)n (n =1–4, 10–16) и супрамолекулярных комплексов [(TiO2)10(H2O)m] (m=1–12). Сделан вывод о преобладании парамагнитного вклада и значительном влиянии размеров, гидратации кластеров на значения изотропной магнитной восприимчивости. Установлены корреляционные связи и предложены уравнения регрессии между значениями изотропной магнитной восприимчивости и количеством электронов в кластерах (TiO2)n, а также, молекул воды в комплексах (TiO2)10(H2O)m.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Г. Михайлов

Уфимский университет науки и технологий

Хат алмасуға жауапты Автор.
Email: gpmikhailov@mail.ru
Ресей, 450076, Уфа

Әдебиет тізімі

  1. Hong N.H., Sakai J., Poirot N. et al. // Phys. Rev. B. 2006. V. 73. P. 132404. doi: 10.1103/PHYSREVB.73.132404.
  2. Sudakar C., Kharel P., Suryanarayanan R. et al. //J. Magn. Magn. Mater. 2008. V. 320. № 31. P. 2755. doi: 10.1016/j.jmmm.2008.06.006.
  3. Chen B., Haring A.J., Beach J.A. et al. // RSC Adv. 2014. V. 4. № 35. P. 18033. doi: 10.1039/c4ra00702f.
  4. Sui Y., Liu Q., Jiang T., Guo Y. // Appl. Surf. Sci. 2018. V. 428. P. 1149. doi: 10.1016/j.apsusc.2017.09.197.
  5. Kaleji B.K., Mirzaee S., Ghahramani S. et al. // J. Mater. Sci. Mater. Electron. 2018. V. 29. P. 12351. doi: 10.1007/s10854-018-9348-x.
  6. Molochnikov L.S., Borodin K.I., Yermakov A.E. et al. // Mater. Chem. Phys. 2022. V. 276 (15). P. 125327. doi: 10.1016/j.matchemphys.2021.125327.
  7. Iqbal M.Z., Luo D., Akakuru O.U. et al. // J. Mater. Chem. B. 2021. V. 9. P. 6623. doi: 10.1039/D1TB01097B.
  8. Rana T.H., Sahota P.K., Solanki A.K. et al. // J. Appl. Phys. 2013. V. 113. P. 17B526. doi: 10.1063/1.4799616.
  9. Gaussian 09, Revision D.01, Frisch M.J., Trucks G.W., Schlegel H.B., et al. Gaussian, Inc., Wallingford CT, 2013.
  10. Shenggang Li, Dixon D.A. //J. Phys. Chem A. 2008. V. 112(29). P. 6646. doi: 10.1021/jp800170q.
  11. Zheng-wang Qu and Geert-Jan Kroes. //J. Phys. Chem. C .2007. V.111. № 45. P. 16808. doi: 10.1021/jp073988t.
  12. Ruud K., Helgaker T., Bak K.L. et al. // J. Chem. Phys.1993. V. 99. P. 3847. doi: 10.1063/1.466131.
  13. Marenich A.V., Cramer C.J., Truhlar D.G. // J. Phys. Chem. B. 2009. V. 113. P. 6378. doi: 10.1021/jp810292.
  14. Zhurko Z.A. Chemcraft. Version 1.6 [site]. URL: www.chemcraftprog.com.
  15. Шеберстов К.Ф., Чертков В.А. //Изв. АН. Сер. хим. 2015. № 4. С. 794. [Sheberstov K.F., Chertkov V.A. // Russ. Chem. Bull. 2015. V. 64. № 4. P. 794.] doi: 10.1007/s11172-015-0935-1.
  16. Cheng H., Fowler D.E., Henderson P.B. et al. // J. Phys. Chem. A. 2000. V. 104. № 1. P. 170. doi: 10.1021/jp992556i.
  17. Appleman B.R., Dailey B.P. // Advan. Magn. Res. 1974. V. 7. P. 231.
  18. Zhao Yan, Truhlar Donald G. // Theor. Chem. Account. 2008. V. 120. P. 215. doi: 10.1007/s00214-007-0310-x.
  19. Stepanov N.P., Nalivkin V.Y. // Rus. Phys. J. 2016. V. 59. P. 84. doi: 10.1007/s11182-016-0741-8.
  20. Rui Guo, M. Nadia Uddin, Louise S. Price et al. // J. Phys. Chem. A. 2020. V. 124. P. 1409. doi: 10.1021/acs.jpca.9b07104.
  21. Chen M., Straatsma T.P., Dixon D.A. //Ibid. 2015. V. 119(46). P. 11406. doi: 10.1021/acs.jpca.5b07697.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Optimized structures of the TiO2 molecule (a), (TiO2)n clusters (n = 2 (b), 3 (c), and 4 (d)) and the (TiO2)10(H2O)9 complex (d).

Жүктеу (462KB)

© Russian Academy of Sciences, 2024