Morphology and luminescent properties of NaYF4 microcrystalline upconversion materials doped with ytterbium(III) and holmium(III) ions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Microcrystalline upconversion materials NaY0.8- x Yb0.2Ho x F4 ( x = 0-0.1) were synthesized by hydrothermal synthesis for the first time. All the synthesized compounds have hexagonal β-NaYF4 crystalline phase. Holmium(III) ions isomorphically replace yttrium ions. The maximum upconversion emission intensity is observed for NaY0.78Yb0.2Ho0.02F4 in the visible region of the spectrum upon excitation at a wavelength of 973 nm.

作者简介

T. Bulatova

St. Petersburg State University

A. Betina

St. Petersburg State University

V. Nosov

St. Petersburg State University

I. Kolesnikov

St. Petersburg State University

N. Bogachev

St. Petersburg State University

M. Skripkin

St. Petersburg State University

E. Khairullina

St. Petersburg State University

A. Mereshchenko

St. Petersburg State University

Email: a.mereshchenko@spbu.ru

参考

  1. Zheng B., Fan J., Chen B., Qin X., Wang J., Wang F., Deng R., Liu X. // Chem. Rev. 2022. Vol. 122. N 6. P. 5519. doi: 10.1021/acs.chemrev.1c00644
  2. Chen G., Qiu H., Prasad P. N., Chen X. // Chem. Rev. 2014. Vol. 114. N 10. P. 5161. doi: 10.1021/cr400425h
  3. Swieten T.P., Yu D., Yu T., Vonk S.J.W., Suta M., Zhang Q., Meijerink A., Rabouw F.T. // Adv. Optical Mater. 2021. Vol. 9. N 1. P. 2001518. doi: 10.1002/adom.202001518
  4. Tou M., Mei Y., Bai S., Luo Z., Zhanga Y., Li Z. // Nanoscale. 2016. Vol. 8. N 1. P. 553. doi: 10.1039/c5nr06806a
  5. Hu J., Wang R., Fan R., Huang Z., Liu Y., Guo G., Fu H. // J. Luminesc. 2020. Vol. 217. P. 116812. doi: 10.1016/j.jlumin.2019.116812
  6. Kavand A., Serra C. A., Blanck C., Lenertz M., Anton N., Vandamme T.F., Chan-Seng D. // ACS Appl. Nano Mater. 2021. Vol. 4. N 5. P. 5319. doi: 10.1021/acsanm.1c00664
  7. Zhang J.-z., Xia H.-p., Yang S., Jiang Y.-z., Gu X.-m., Zhang J.-l., Jiang H.-c., Chen B.-j. // Chinese J. Chem. Phys. 2015. Vol. 28. P. 351. doi: 10.1063/1674-0068/28/cjcp1503042.
  8. Yu D.C., Huang X.Y., Ye S., Zhang Q.Y. // J. Alloys Compd. 2011. Vol. 509. P. 9919. doi: 10.1016/j.jallcom.2011.07.088
  9. Gao W., Sun Z., Han Q., Zhang J., Yan X., Ge H., Dong J. // Mater. Res. Bull. 2018. Vol. 108. P. 10. doi: 10.1016/j.materresbull.2018.08.025
  10. Chen Y., Hao X., Zhou J., Jiao Y., He W., Wang H., Lu J., Yang S. // Mater. Lett. 2012. Vol. 83. P. 49. doi: 10.1016/j.matlet.2012.05.122
  11. Yu D.C., Ye S., Huang X.Y., Zhang Q.Y. // AIP Adv. 2012. Vol. 2. P. 022124. doi: 10.1063/1.4718412
  12. Dong M., Li X., Chi F., Wei X., Yin M., Chen Y. // J. Rare Earths. 2017. Vol. 35. N 7. P. 629. doi: 10.1016/s1002-0721(17)60956-6
  13. Lingeshwar Reddy K., Srinivas V., Shankar K.R., Kumar S., Sharma V., Kumar A., Bahuguna A., Bhattacharyya K., Krishnan V. // J. Phys. Chem. (C). 2017. Vol. 121 N 21. P. 11783. doi: 10.1021/acs.jpcc.7b01334
  14. Gao W., Zheng H., Han Q., He E., Wang R. // Cryst. Eng. Commun. 2014. Vol. 16. N 29. P. 6697. doi: 10.1039/c4ce00627e
  15. Ye S., Chen G., Shao W., Qu J., Prasad P.N. // Nanoscale. 2015. Vol. 7. P. 3976. doi: 10.1039/c4nr07678h
  16. Vidyakina A.A., Kolesnikov I.E., Bogachev N.A., Skripkin M.Y., Tumkin I.I., Lähderanta E., Mereshchenko A.S. // Materials. 2020. Vol. 13. P. 3397. doi: 10.3390/ma13153397.
  17. Видякина А.А., Жеглов Д.А., Олейник А.В., Фрейнкман О.В., Колесников И.Е., Богачев Н.А., Скрипкин М.Ю., Мерещенко А.С. // ЖОХ. 2021. Т. 91. № 5. C. 763. doi: 10.31857/S0044460X21050140
  18. Vidyakina A.A., Zheglov D.A., Oleinik A.V., Freinkman O.V., Kolesnikov I.E., Bogachev N.A., Skripkin M.Y., Mereshchenko A.S. // Russ. J. Gen. Chem. 2021. Vol. 91. P. 844. doi: 10.1134/S1070363221050145
  19. Kolesnikov I.E., Vidyakina A.A., Vasileva M.S., Nosov V.G., Bogachev N.A., Sosnovsky V.B., Skripkin M.Y., Tumkin I.I., Lahderanta E., Mereshchenko A.S. // New J. Chem. 2021. Vol. 45. P. 10599. doi: 10.1039/d1nj02193a
  20. Yi G.D., Chow G.M. // Adv. Funct. Mater. 2006. Vol. 16. N 18 P. 2324. doi: 10.1002/adfm.200600053
  21. Liu X., Zhao J., Sun Y., Song K., Yu Y., Du C., Kong X., Zhang H. // Chem. Commun. 2009. Vol. 43. P. 6628. doi: 10.1039/b915517a
  22. Zhou S., Deng K., Wei X., Jiang G., Duan C., Chen Y., Yin M. // Opt. Commun. 2013. Vol. 291. P. 138. doi: 10.1016/j.optcom.2012.11.005
  23. Wang F., Liu X. // Acc. Chemi. Res. 2014. Vol. 47. N 4. P. 1378. doi: 10.1021/ar5000067
  24. Shannon R.D. // Acta Crystallogr. (A). 1976. Vol. 32. P. 751. doi: 10.1107/S0567739476001551
  25. Szefczyk B., Roszak R., Roszak S. // RSC Adv. 2014. Vol. 4. N 43. P. 22526. doi: 10.1039/c4ra00211c
  26. Bogachev N.A., Betina A.A., Bulatova T.S., Nosov V.G., Kolesnik S.S., Tumkin I.I., Ryazantsev M.N., Skripkin M.Y., Mereshchenko A.S. // Nanomaterials. 2022. Vol. 12. N 17. P. 2972. doi: 10.3390/nano12172972
  27. Pandey A., Rai V.K. // Dalton Trans. 2013. Vol. 42. N 30. P. 11005. doi: 10.1039/c3dt50592h.
  28. Syamchand S.S., George S. // J. Nanopart. Res. 2016. Vol. 18. N 12. P. 385. doi: 10.1007/s11051-016-3699-0
  29. Miao J., Su J., Wen Y., Rao W. // J. Alloys Compd. 2015. Vol. 636. P. 8. doi: 10.1016/j.jallcom.2015.02.129
  30. Singh N.S., Ningthoujam R.S., Luwang M.N., Singh S.D., Vatsa R.K. // Chem. Phys. Lett. 2009. Vol. 480. P. 237. doi: 10.1016/j.cplett.2009.09.006
  31. Galleani G., Santagneli S.H., Lendemi Y., Messaddeq Y. // J. Phys. Chem. 2018. Vol. 122. N 4. P. 2275. doi: 10.1021/acs.jpcc.7b09562

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023