Thermal and Luminescent Properties of Multi-Ligand Complexes of Europium(III) with Pyrazine-2-carboxylic Acid

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Eu(III) compounds with pyrazine-2-carboxylic acid and nitrogen- and phosphorus-containing neutral ligands were synthesized. Using the methods of chemical elemental and thermal analysis and IR spectroscopy, the composition of the complexes and the method of coordination of carboxylate ions were established. The most thermally stable compounds have been identified. The luminescent characteristics of complex compounds have been studied. It was found that the maximum luminescence intensity is characteristic of europium(III) pyrazinate with triphenylphosphine oxide. The morphological structure and dispersion of the complexes were determined.

Full Text

Restricted Access

About the authors

I. V. Kalinovskaya

Institute of Chemistry, Far-Eastern Branch of the Russian Academy of Sciences

Author for correspondence.
Email: kalinovskaya@ich.dvo.ru
ORCID iD: 0000-0001-6858-6595
Russian Federation, Vladivostok

A. N. Zadorozhnaya

Pacific State Medical University of the Ministry of Health of the Russian Federation

Email: kalinovskaya@ich.dvo.ru
ORCID iD: 0000-0002-1494-3769
Russian Federation, Vladivostok

V. G. Kuryavy

Institute of Chemistry, Far-Eastern Branch of the Russian Academy of Sciences

Email: kalinovskaya@ich.dvo.ru
Russian Federation, Vladivostok

L. D. Popov

Southern Federal University

Email: kalinovskaya@ich.dvo.ru
ORCID iD: 0000-0001-9565-8005
Russian Federation, Rostov-on-Don

References

  1. de Sá G.F., Malta O.L., de Mello Donegá C., Simas A.M., Longo R.L., Santa-Cruz P.A., da Silva E.F., Jr. // Coord. Chem. Rev. 2000. Vol. 196. P. 165. doi: 10.1016/S0010-8545(99)00054-5
  2. Kalinovskaya I.V., Zadorozhnaya A.N. // J. Mol. Struct. 2017. Vol. 1157. P. 14. doi: 10.1016/j.molstruc.2017.11.035
  3. Kataoka H., Kitano T., Takizawa T., Hirai Y., Nakanishi T., Hasegawa Y. // J. Alloys Compd. 2014. Vol. 601. P. 293. doi: 10.1016/j.jallcom.2014.01.165
  4. Hasegawa Y., Nakanishi T. // RSC. Adv. 2015. Vol. 5. P. 338. doi: 10.1039/C4RA09255D
  5. Deacon G.B., Forsyth C.M., Junk P.C., Leary S.G. // Z. anorg. allg. Chem. 2008. Vol. 634. N 1. P.91. doi: 10.1002/zaac.200700359
  6. Николаев А.А., Кулясов А.Н., Панюшкин В.Т. // ЖОХ. 2021. Т. 91. № 1. С. 131. doi: 10.31857/S0044460X21010145; Nikolaev A.A., Kulyasov A.N., Panyushkin V.T. // Russ. J. Gen. Chem. 2020. Vol. 90. P. 2498. doi: 10.1134/S1070363220120439
  7. Bunzli J.-C.G., Eliseeva S.V. // J. Chem. Sci. 2013. Vol. 4. N 5. P. 1939. doi: 10.1039/C3SC22126A
  8. Калиновская И.В., Задорожная А.Н., Савченко Н.Н. // ЖОХ. 2019. Т. 89. № 11. C. 1780. doi: 10.1134/S0044460X19110192; Kalinovskaya I.V., Zadorozhnaia A.N., Savchenko N.N. // Russ. J. Gen. chem. 2019. Vol. 89. N 11. P. 2285. doi: 10.1134/S1070363219110197
  9. Калиновская И.В., Задорожная А.Н., Привар Ю.О. // ЖОХ. 2021. Т. 91. № 2. C. 238. doi: 10.31857/S0044460X21020074; Kalinovskaya I.V., Zadorozhnaya A.N., Privar Yu.O. // Russ. J. Gen Сhem. 2021. Vol. 91. N 2. P. 196. doi: 10.1134/S1070363221020079
  10. Utochnikova V.V., Kovalenko A.D., Burlov A.S., Marciniak L., Ananyev I.V., Kalyakina A.S., Kurchavov N.A., Kuzmina N.P. // Dalton Trans. 2015. Vol. 44. P. 12660. doi: 10.1039/C5DT01161B
  11. Serward C., Hu N.X. Wang J. // Chem. Soc. Dalton Trans. 2001. Vol. 1. P. 134. doi: 10.1039/B007866M
  12. Bukvetskii B.V., Kalinovskaya I.V. // J. Fluoresc. 2017. Vol. 27. N 3. P. 773. doi: 10.1007/s10895-016-2009-7
  13. Mesquita M.E., Sa G.F., Malta O.L. // J. Alloys Compd. 1997. Vol. 250. P. 417. doi: 10.1016/S0925-8388(96)02561-3
  14. Киселева Е.А. // Вестн. ЦНИИТ. 2021. C. 68. doi: 10.7868/S2587667821050289
  15. Eliseeva S.V., Mirzov O.V., Troyanov S.I., Vitukhnovsky A.G., Kuzmina N.P. // J. Alloys Compd. 2004. Vol. 374. P. 293. doi: 10.1016/j.jallcom.2003.11.123
  16. Гасанова С.С., Гасанова У.М., Мамедова Л.Н., Мовсумов Е. // Евразийский союз ученых. 2020. Т. 81. № 12. С. 24. doi: 10.31618/ESU.2413-9335.2020.3.81.1155
  17. Kunkely H., Vogler A. // J. Photochem. Photobiol. (A). 2002. Vol. 151. P. 45. doi: 10.1016/S1010-6030(02)00171-5
  18. Ptasiewicz-Bak H., Leciejewicz J., Zachara J. // J. Coord. Chem. 1995. Vol. 36. P. 317. doi 10.1080/ 00958979508022682
  19. Андреев Г.Б., Буданцева Н.А., Перминов В.П., Федосеев А.М. // Радиохимия. 2005. Т. 47. № 1. С. 35.
  20. Накамото К. Инфракрасные спектры неорганических и координационных соединений. М.: Мир, 1991. 536 с.
  21. Misra S.N., Singh M. // J. Ind. Chem. Soc. 1983. Vol. 60. N 2. Р. 115.
  22. Pimentel P.M., Oliveira V.S., Silva Z.R., Melo D.M.A., Zinner L.B., Vicentini G., Bombieri G. // Polyhedron. 2000. Vol. 19. P. 2651. doi: 10.1016/S0277-5387(01)00868-3
  23. Беллами Л. Инфракрасные спектры сложных молекул. М.: ИЛ, 1963. 590 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Powder diffractograms of pyca (a), phen (b), Eu(pyca)3phen∙H2O (c), dipy (d), Eu(pyca)3(dipy)2(H2O)2 (e), tppo (f), Eu(pyca)3tppo∙H2O (g), dphg (h), Eu(pyca)3(dphg)2(H2O)2 (i)

Download (741KB)
3. Fig. 2. Morphological structure of europium pyrazinates: Eu(pyca)3tppo∙H2O (a), Eu(pyca)3phen∙H2O (b), Eu(pyca)3(dipy)2(H2O)2 (c), Eu(pyca)3(dphg)2(H2O)2 (d)

Download (947KB)
4. Fig. 3. Thermograms of europium(III) pyrazinates: Eu(pyca)3(H2O)2 (a), Eu(pyca)3(dipy)2(H2O)2 (b), Eu(pyca)3(dphg)2(H2O)2 (c), Eu(pyca)3tppo∙H2O (d)

Download (657KB)
5. Fig. 4. IR spectra of samples: pyca (a), Eu(pyca)3tppo∙H2O (b), Eu(pyca)3(H2O)2 (c), Eu(pyca)3(dphg)2(H2O)2 (d), Eu(pyca)3phen∙H2O (e), Eu(pyca)3(dipy)2(H2O)2 (f)

Download (1MB)
6. Fig. 5. Excitation spectra of luminescence (a) and luminescence (b): 1 - Eu(pyca)3phen∙H2O, 2 - Eu(pyca)3(H2O)2, 3 - Eu(pyca)3(dphg)2(H2O)2, 4 - Eu(pyca)3(dipy)2(H2O)2, 5 - Eu(pyca)3tppo∙H2O (293 K)

Download (379KB)

Copyright (c) 2024 Russian Academy of Sciences