1,3-dipolar cycloaddition as a method for the synthesis of dipyrrolidinyl- and dipyrrolylketones

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In the reactions of 1,3-dipolar cycloaddition of a twofold excess of aryl aldimines of glycine ethyl ester with diarylideneacetones and diarylidenecyclohexanones in the presence of silver acetate, the corresponding dipyrrolidinylketones were obtained. Diethyl 4,4′-carbonylbis(3,5-diarylpyrrolidine-2-carboxylates) obtained from diarylideneacetones undergo aromatization under the action of N-bromosuccinimide to form diethyl 4,4′-carbonylbis(3,5-diaryl-1H-pyrrole-2-carboxylates). The selectivity of the reactions and the structure of the products were determined using correlation NMR spectroscopy and X-ray diffraction analysis.

全文:

受限制的访问

作者简介

S. Kostryukov

National Research Ogarev Mordovia State University

编辑信件的主要联系方式.
Email: kostryukov_sg@mail.ru
ORCID iD: 0000-0002-1774-0836
俄罗斯联邦, Saransk, 430005

V. Kalyazin

National Research Ogarev Mordovia State University

Email: kostryukov_sg@mail.ru
ORCID iD: 0000-0002-0650-6753
俄罗斯联邦, Saransk, 430005

P. Petrov

National Research Ogarev Mordovia State University

Email: kostryukov_sg@mail.ru
ORCID iD: 0000-0001-7232-0335
俄罗斯联邦, Saransk, 430005

E. Bezrukova

National Research Ogarev Mordovia State University

Email: kostryukov_sg@mail.ru
ORCID iD: 0000-0003-2428-3925
俄罗斯联邦, Saransk, 430005

N. Somov

Lobachevsky State University of Nizhny Novgorod

Email: kostryukov_sg@mail.ru
ORCID iD: 0000-0001-9460-307X
俄罗斯联邦, Nizhnij Novgorod, 603950

参考

  1. Resendiz M.J.E., Natarajana A., Garcia-Garibay M.A. // Chem. Commun. 2008. Vol. 44. N 2. P. 193. doi: 10.1039/b711786h
  2. Resendiz M.J.E., Family F., Fuller K., Campos L.M., Khan S.I., Lebedeva N.V., Forbes M.D.E., Garcia-Garibay M.A. // J. Am. Chem. Soc. 2009. Vol. 131. N 24. P. 8425. doi: 10.1021/ja900781n
  3. Dotson J.J., Liepuoniute I., Bachman J.L., Hipwell V.M., Khan S.I., Houk K. N., Garg N.K., Garcia-Garibay M.A. // J. Am. Chem. Soc. 2021. Vol. 143. N 10. P. 4043. doi: 10.1021/jacs.1c01100
  4. Dotson J.J., Bachman J.L., Garcia-Garibay M.A. // J. Am. Chem. Soc. 2020. Vol. 142. N 27. P. 11685. doi: 10.1021/jacs.0c04760
  5. Hui C., Brieger L., Strohmann C., Antonchick A.P. // J. Am. Chem. Soc. 2021. Vol. 143. N 45. P. 18864. doi: 10.1021/jacs.1c10175
  6. Al-Kadhimi A.A., Al-Hamdany A., Jasim S.S. // Res. J. Pharm. Biol. Chem. Sci. 2012. Vol. 3. N 1. P. 908. doi: 10.33887/rjpbcs
  7. Nadkarni D.H., Murugesan S., Velu S.E. // Tetrahedron. 2013. Vol. 69. N 20. P. 4105. doi: 10.1016/j.tet.2013.03.052
  8. Vanicat A., André-Barrès C., Delfourne E. // Tetrahedron Lett. 2017. Vol. 58. N 4. P. 342. doi 10.1016/ j.tetlet.2016.12.030
  9. Murugesan S., Nadkarni D.H., Velu S.E. // Tetrahedron Lett. 2009. Vol. 50. N 25. P. 3074. doi 10.1016/ j.tetlet.2009.04.021
  10. Aouchiche H.A., Djennane S., Boucekkine A. // Synth. Met. 2004. Vol. 140. N 2–3. P. 127. doi: 10.1016/S0379-6779(03)00339-4
  11. de Groot J.A., van der Steen R., Fokkens R., Lugtenburg J. // Recl. Trav. Chim. Pays-Bas. 1982. Vol. 101. N 1. P. 35. doi: 10.1002/recl.19821010103
  12. Padmavathi V., Reddy B.J.M., Venkata Subbaiah D.R.C. // New J. Chem. 2004. Vol. 28. N 12. P. 1479. doi: 10.1039/b409968k
  13. Wang R., Wang S.-Y., Ji S.-J. // Org. Biomol. Chem. 2014. Vol. 12. N 11. P. 1735. doi: 10.1039/c3ob42570c
  14. Potowski M., Schîrmann M., Preut H., Antonchick A.P., Waldmann H. // Nat. Chem. Biol. 2012. Vol. 8. N 5. P. 428. doi: 10.1038/nchembio.901
  15. Potowski M., Merten C., Antonchick A.P., Waldmann H. // Chem. Eur. J. 2015. Vol. 21. N 13. P. 4913. doi: 10.1002/chem.201500125
  16. Hernández-Toribio J., Arrayás R.G., Martín-Matute B., Carretero J.C. // Org. Lett. 2009. Vol. 11. N 2. P. 393. doi: 10.1021/ol802664m
  17. Oura I., Shimizu K., Ogata K. Fukuzawa S. // Org. Lett. 2010. Vol. 12. N 8. P. 1752. doi: 10.1021/ol100336q
  18. Bdiri B., Li C., Zhou Z.-M. // Tetrahedron: Asym. 2017. Vol. 28. N 8. P. 1044. doi: 10.1016/j.tetasy.2017.06.004
  19. Gayen B., Banerji A. // J. Heterocycl. Chem. 2015. Vol. 52. N 3. P. 919. doi. 10.1002/jhet.2196
  20. Blaney P., Grigg R., Rankovic Z., Thornton-Pett M., Xu J. // Tetrahedron. 2002. Vol. 58. N 9. P. 1719. doi: 10.1016/S0040-4020(02)00029-7
  21. Кострюков С.Г., Калязин В.А., Петров П.С., Безрукова Е.В. // ЖОХ. 2023. Т. 93. № 6. С. 823. doi: 10.31857/S0044460X2306001X; Kostryukov S.G., Kalyazin V.A., Petrov P.S., Bezrukova E.V. // Russ. J. Gen. Chem. 2023. Vol. 93. N 6. P. 1311. doi: 10.1134/S1070363223060014
  22. Barr D.A., Dorrity M.J., Grigg R., Hargreaves S., Malone J.F., Montgomery J., Redpath J., Stevenson P., Thornton-Pett M. // Tetrahedron. 1995. Vol. 51. N 1. P. 273. doi: 10.1016/0040-4020(94)00940-V
  23. Kostryukov S.G., Kalyazin V.A., Petrov P.S., Bezrukova E.V., Somov N.V. // Russ. J. Org. Chem. 2024. Vol. 60. N 2. P. 281.doi: 10.1134/s1070428024020143.
  24. Lokhande P.D., Hasanzadeh K., Khaledi H., Ali H.M. // J. Heterocycl. Chem. 2012. Vol. 49. N 6. P. 1398. doi: 10.1002/jhet.1049
  25. Hati S., Sen S. // Tetrahedron Lett. 2016. Vol. 57. N 9. P. 1040. doi: 10.1016/j.tetlet.2016.01.081
  26. Conard C.R., Dolliver M.A. // Org. Synth. 1932. Vol. 12. P. 22. doi: 10.15227/orgsyn.012.0022
  27. Zhi M., Gan Z., Ma R., Cui H., Li E., Duan Z., Mathey F. // Org. Lett. 2019. Vol. 21. N 9. P. 3210. doi 10.1021/ acs.orglett.9b00926
  28. Sheldrick G.M. // Acta Crystallogr. (A). 2015. Vol. 71. N 1. P. 3. doi: 10.1107/S2053229614024218
  29. Hübschle C.B., Sheldrick G.M., Dittrich B.J. // Appl. Cryst. 2011. Vol. 44. N 6. P. 1281. doi: 10.1107/S0021889811043202
  30. Clark R.C., Reid J.S. // Acta Crystallogr. 1995. Vol. 51. N 6. P. 887. doi: 10.1107/S0108767395007367

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Spatial structure (2S*,2'S*,3R*,3'R*, 4S*,4'S*,5R*,5'R*)-diethyl-4,4'-carbonylbis(5-phenyl-3-(4-chlorophenyl)pyrrolidine-2-carboxylate) 6a according to the RSA.Fig. 1. Spatial structure (2S*,2'S*,3R*,3'R*, 4S*,4'S*,5R*,5'R*)-diethyl-4,4'-carbonylbis(5-phenyl-3-(4-chlorophenyl)pyrrolidine-2-carboxylate) 6a according to the RSA.

下载 (122KB)
3. Fig. 2. Fragment of the 1H–13C HMBC spectrum (2S*,2'S*,3R*,3'R*,4S*,4'S*,5R*,5'R*)-диэтил-4,4'-карбонилбис[3,5-бис(4-хлорфенил)пирролидин-2-карбоксилата] 6b.

下载 (94KB)
4. Fig. 3. Fragment of the 1H–1H NOESY spectrum (2S*,2'S*,3R*,3'R*,4S*,4'S*,5R*,5'R*)-диэтил-4,4'-карбонилбис[3,5-бис(4-хлорфенил)пирролидин-2-карбоксилата] 6b.

下载 (104KB)
5. Fig. 4. Fragment of the spectrum of 1H–13C HMBC (1S*,3S*,4S*,5S*,7S*,8S*,10S*,11S*)-diethyl-6-oxo-1,8-diphenyl-4,11-bis- (4-chlorophenyl)-2,9-diazadispiro[4.1.47.35]tetradecane-3,10-carboxylate 12a.

下载 (94KB)
6. Fig. 5. Fragment of the spectrum of 1H–1H NOESY (1S*,3S*,4S*,5S*,7S*,8S*,10S*,11S*)-diethyl-6-oxo-1,8-diphenyl-4,11-bis- (4-chlorophenyl)-2,9-diazadispiro[4.1.47.35]tetradecane-3,10-carboxylate 12a.

下载 (94KB)
7. Fig. 6. Fragment of the spectrum of 1H–1H NOESY (1S*,3S*,4S*,5S*,E)-ethyl-6-oxo-1-phenyl-7-(4-chlorobenzylidene)-4-(4-chlorophenyl)-2-azaspiro[4.5]Decan-3-carboxylate 14.

下载 (58KB)
8. Fig. 7. A fragment of the 1H–1H NOESY spectrum of compounds 14 and 14' (signals and cross-peaks for compound 14' are indicated).

下载 (98KB)
9. Scheme 1.

下载 (80KB)
10. Scheme 2.

下载 (99KB)
11. Scheme 3.

下载 (97KB)
12. Scheme 4.

下载 (86KB)
13. Scheme 5.

下载 (108KB)
14. Scheme 6.

下载 (58KB)
15. Scheme 7.

下载 (88KB)
16. Scheme 8.

下载 (87KB)

版权所有 © Russian Academy of Sciences, 2024