5-(2-quinolyl)tetrabenzoporphyrin and Its complexes with zinc, cobalt, copper and manganese. Synthesis, spectral, electrochemical and electrocatalytic properties

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

By reacting phthalimide with quinaldine in the presence of zinc oxide, 3-(quinolin-2-ylmethylene)isoindolin-1-one was synthesized. Heating its mixture with excess phthalimide and zinc acetate leads to the formation of zinc 5-(2-quinolyl)tetrabenzoporphyrinate, which, when treated with acid, is converted to 5-(2-quinolyl)tetrabenzoporphyrin. The latter, when interacting with cobalt(II), copper(II) and manganese(II) chlorides in DMF, forms the corresponding metal complexes. The composition and structure of the obtained compounds were confirmed by a complex of physicochemical methods of analysis. The results of quantum-chemical calculations of complexes by DFT and TD-DFT methods are presented. The first absorption bands in theoretical electronic spectra are assigned to the corresponding electronic transitions in molecules. All synthesized tetrabenzoporphyrins have catalytic activity in the electroreduction reaction of oxygen; the cobalt complex exhibits the greatest activity.

全文:

受限制的访问

作者简介

T. Rumyantseva

Ivanovo State University of Chemistry and Technology

编辑信件的主要联系方式.
Email: taisialeb@mail.ru
ORCID iD: 0000-0002-4110-0572
俄罗斯联邦, Ivanovo, 153000

N. Berezina

Ivanovo State University of Chemistry and Technology

Email: taisialeb@mail.ru
ORCID iD: 0000-0003-1784-7091
俄罗斯联邦, Ivanovo, 153000

M. Bazanov

Ivanovo State University of Chemistry and Technology

Email: taisialeb@mail.ru
ORCID iD: 0000-0003-0425-2021
俄罗斯联邦, Ivanovo, 153000

N. Galanin

Ivanovo State University of Chemistry and Technology

Email: taisialeb@mail.ru
ORCID iD: 0000-0001-6117-167X
俄罗斯联邦, Ivanovo, 153000

参考

  1. Takahashi K., Shan B., Xu X., Yang S., Koganezawa T., Kuzuhara D., Aratani N., Suzuki M., Miao Q., Yamada H. // ACS Appl. Mat. Interfaces. 2017. Vol. 9. N 9. P. 8211. doi: 10.1021/acsami.6b13988
  2. Paolesse R., Nardis S., Monti D., Stefanelli M., Di Natale C. // Chem. Rev. 2017. Vol. 117. N 4. P. 2517. doi: 10.1021/acs.chemrev.6b00361
  3. Baluschev S., Yakutkin V., Miteva T., Wegner G., Roberts T., Nelles G., Yasuda A., Chernov S., Aleshchenkov S., Cheprakov A. // New J. Phys. 2008. Vol. 10. N 1. Article no. 013007. doi: 10.1088/1367-2630/10/1/013007
  4. Gottumukkala V., Ongayi O., Baker D.G., Lomax L.G., Vicente M.G.H. // Bioorg. Med. Chem. 2006. Vol. 14. N 6. P. 1871. doi: 10.1016/j.bmc.2005.10.037
  5. Евсеев А.А., Базанов М.И., Галанин Н.Е., Петров А.В., Андриевский Г. // Изв. вузов. Сер. хим. и хим. технол. 2004. Т. 47. № 10. С. 24.
  6. Галанин Н.Е., Колесников Н.А., Кудрик Е.В., Шапошников Г.П. // ЖОрХ. 2004. Т. 40. № 2. С. 297; Galanin N.E., Kolesnikov N.A., Kudrik E.V., Shaposhnikov G.P. // Russ. J. Org. Chem. 2004. Vol. 40. N 2. P. 269. doi: 10.1023/b:rujo.0000034952.23380.cd
  7. Галанин Н.Е., Кудрик Е.В., Лебедев М.Е., Александрийский В.В., Шапошников Г.П. // ЖОрХ. 2005. Т. 41. № 2. С. 306; Galanin N.E., Kudrik E.V., Lebedev M.E., Aleksandriiskii V.V., Shaposhnikov G.P. // Russ. J. Org. Chem. 2005. Vol. 41. N 2. Р. 298. doi 10.1007/ s11178-005-0161-7
  8. Коптяев А.И., Базанов М.И., Галанин Н.Е. // ЖОрХ. 2020. Т. 56. № 5. С. 735; Koptyaev A.I., Bazanov M.I., Galanin N.E. // Russ. J. Org. Chem. 2020. Vol. 56. N 5. С. 788. doi: 10.1134/S1070428020050103
  9. Майорова Е.И., Румянцева Т.А., Базанов М.И., Галанин Н.Е. // ЖОХ. 2023. Т. 93. № 7. С. 1114; Mayorova E.I., Rumyantseva T.A., Bazanov M.I., Galanin N.E. // Russ. J. Gen. Chem. 2023. Vol. 93. N 7. P. 1751. doi: 10.1134/S1070363223070162
  10. Nasri S., Guergueb M., Brahmi J., Al-Ghamdi Y.O., Molton F., Loiseau F., Turowska-Tyrk I., Nasri H. // Molecules. 2022. Vol. 27. N 24. Article no. 8866. doi: 10.3390/molecules2724886.
  11. Anand N., Yadava S., Chaurasia P.K., Bharati S.L. // Russ. J. Inorg. Chem. 2019. Vol. 64. N 9. P. 1101. doi: 10.1134/S003602361909002X
  12. Koehorst R.B.M., Kleibeuker J.F., Schaafsma T.J., de Bie D.A., Geurtsen B., Henrie R.N., van der Plas H.C. // J. Chem. Soc., Perkin Trans. 2. 1981. N 7. P. 1005. doi: 10.1039/P29810001005
  13. Edwards L., Gouterman M., Rose C.B. // J. Am. Chem. Soc. 1976. Vol. 98. N 24. P. 7638. doi: 10.1021/ja00440a031
  14. Senge M.O., Bischoff I. // Tetrahedron Lett. 2004. Vol. 45. N 8. P. 1647. doi: 10.1016/j.tetlet.2003.12.121
  15. Filatov M.A., Lebedev A.Y., Vinogradov S.A., Cheprakov A.V. // J. Org. Chem. 2008. Vol. 73. N 11. P. 4175. doi: 10.1021/jo800509k
  16. Lebedev A.Y., Filatov M.A., Cheprakov A.V., Vinogradov S.A. // J. Phys. Chem. (A). 2008. Vol. 112. N 33. P. 7723. doi: 10.1021/jp8043626
  17. Мамардашвили Г.М., Чижова Н.В., Кайгородова Е.Ю., Мамардашвили Н.Ж. // ЖНХ. 2017. Т. 62. № 3. С. 296; Mamardashvili G.M., Chizhova N.V., Kaigorodova E.Y., Mamardashvili N.Zh. // Russ. J. Inorg. Chem. Vol. 62. N 3. P. 301. doi: 10.1134/S0036023617030123
  18. Cromer S., Hambright P., Grodkowski J., Neta P. // J. Porph. Phthal. 1997. Vol. 1. N 1. P. 45. doi: 10.1002/(SICI)1099-1409(199701)1:1<45::AID-JPP3>3.0.CO;2-D
  19. Wang L., Fang Y., Xu W., Ou Z., Kadish K.M. // J. Porph. Phthal. 2019. Vol. 23. N 9. P. 1057. doi: 10.1142/S1088424619501013
  20. Kohn W., Sham L.J. // Phys. Rev. 1965. Vol. 140. N 4A. P. A1133. doi: 10.1103/PhysRev.140.A1133
  21. Granovsky A.A. Firefly, V. 8.2.0. http://classic.chem.msu.su/gran/gamess/index.html.
  22. Andrienko G.A. Chemcraft, V.1.8. http://www.chemcraftprog.com
  23. Adamo C., Vincenzo B. // J. Chem. Phys. 1999. Vol. 110. N 13. P. 6158. doi: 10.1063/1.478522
  24. Rappoport D., Furche F. // J. Chem. Phys. 2010. Vol. 133. N 13. Article no. 134105. doi: 10.1063/1.3484283
  25. Eroshin A.V., Otlyotov A.A., Kuzmin I.A., Stuzhin P.A., Zhabanov Y.A. // Int. J. Mol. Sci. 2022. Vol. 23. N 2. 939. doi: 10.3390/ijms23020939
  26. Martynov A.G., Mack J., May A.K., Nyokong T., Gorbunova Y.G., Tsivadze A.Yu. // ACS Omega. 2019. Vol. 4. N 4. P. 7265. doi: 10.1021/acsomega.8b03500
  27. Филимонов Д.А., Алексеева С.В., Базанов М.И., Койфман О.И., Кокорин М.С. // Макрогетероциклы. 2018. Т. 11. № 1. С. 52. doi: 10.6060/mhc151204b
  28. Майрановский В.Г. В кн.: Порфирины: спектроскопия, электрохимия, применение / Под ред. Н.С. Ениколопяна. М.: Наука, 1987. С. 127.
  29. Березина Н.М., Базанов М.И., Максимова А.А., Семейкин А.С. // ЖФХ. 2017. Т. 91. № 12. С. 2084; Berezina N.M., Bazanov M.I., Maksimova A.A., Semeikin A.S. // Russ. J. Phys. Chem. (A). 2017. Vol. 91. N 12. P. 2377. doi: 10.1134/S0036024417120032
  30. Laba K., Lapkowski M., Officer D.L., Wagner P., Data P. // Electrochim. Acta. 2020. Vol. 330. 135140. doi 10.1016/ j.electacta.2019.135140
  31. Do Ngoc Minh, Berezina N.M., Bazanov M.I., Semeikin A.S., Glazunov A.V. // Macroheterocycles. 2014. Vol. 7. N 1. P. 73. doi: 10.6060/mhc131159b

补充文件

附件文件
动作
1. JATS XML
2. Additional Materials
下载 (1MB)
3. Fig. 1. Electronic absorption spectra of porphyrin 1 (1) and complex 3 (2) in chloroform.

下载 (69KB)
4. Fig. 2. Electronic absorption spectra of complexes 4 (1), 5 (2) and 6 (3) in chloroform.

下载 (70KB)
5. Fig. 3. Forms and energies of frontier orbitals (eV) in molecules of complexes 3–6. ΔE = EHOMO – ELUMO, eV.

下载 (442KB)
6. Fig. 4. Calculated electronic absorption spectra of complexes 3 (a), 4 (b), 6 (c).

下载 (126KB)
7. Fig. 5. I–E curves for an electrode with complex 4 in an argon atmosphere (1) and with saturation of the electrolyte with oxygen (2).

下载 (65KB)
8. Scheme 1.

下载 (48KB)
9. Scheme 2.

下载 (97KB)
10. Scheme 3.

下载 (128KB)

版权所有 © Russian Academy of Sciences, 2024