The dynamics of the baseline brain state vary among different subjects under the influence of cognitive tests and blood glucose levels changes

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Based on individualized resting EEG analysis, we studied how changes in blood glucose levels as well as performance of a cognitive task affect the background brain state. Twenty-four healthy adults aged 18–35 performed a word classification test twice: once in a fasting state and once after glucose intake. EEG recordings were analyzed in resting-state conditions with eyes closed (EC) and eyes open (EO), before and after the test at each stage. Changes in integral parameters derived from the structural function of multichannel EEG were evaluated. These parameters served as measures of the spatial (pS) and temporal (pT) organization of EEG activity. Individual analysis revealed significant changes in pT and pS parameters in all participants due to increased glucose levels and the cognitive task, with a significant interaction effect between these factors. Group-averaged results masked these effects due to the variability in individual responses. On an individual level, performing the cognitive test after glucose intake led to a significant increase in pS for most participants, indicating higher differentiation and reduced spatial coherence of EEG processes. This was accompanied by a significant linear correlation between the increase in pS and the reduction in reaction time, suggesting heightened CNS activation. This effect was more pronounced in the eyes-open condition than with eyes closed. A positive correlation between fasting blood glucose levels and pT values was found. After the test, a tendency for pT to increase—reflecting reduced temporal coherence and potentially indicating enhanced functional flexibility of neural processes—was observed. The proposed method for calculating integral parameters that characterize spatial and temporal coherence in multichannel EEG can be used to monitor and study changes in the brain’s functional state during cognitive activity and the effects of substances affecting brain metabolism.

全文:

受限制的访问

作者简介

E. Galperina

Sechenov Institute of Evolutionary Physiology and Biochemistry RAS

编辑信件的主要联系方式.
Email: galperina-e@yandex.ru
俄罗斯联邦, St. Petersburg

O. Kruchinina

Sechenov Institute of Evolutionary Physiology and Biochemistry RAS

Email: galperina-e@yandex.ru
俄罗斯联邦, St. Petersburg

Yu. Chiligina

Sechenov Institute of Evolutionary Physiology and Biochemistry RAS

Email: galperina-e@yandex.ru
俄罗斯联邦, St. Petersburg

V. Ivanov

Herzen Russian State Pedagogical University

Email: galperina-e@yandex.ru
俄罗斯联邦, St. Petersburg

M. Trifonov

Sechenov Institute of Evolutionary Physiology and Biochemistry RAS

Email: galperina-e@yandex.ru
俄罗斯联邦, St. Petersburg

V. Rozhkov

Sechenov Institute of Evolutionary Physiology and Biochemistry RAS

Email: galperina-e@yandex.ru
俄罗斯联邦, St. Petersburg

参考

  1. Tsitseroshin M.N., Shepovalnikov A.N. [Formation of integrative function of the brain]. Saint-Petersburg: Nauka, 2009. 249 p.
  2. Murtazina E.P., Ginzburg-Shic Y.A. [Theta and alpha bands spectral power of resting-state EEG in groups with different efficiency of joint activity in diads] // Zh. Vyssh. Nerv. Deiat. Im. I.P. Pavlova. 2023. V. 73. № 1. P. 24.
  3. Klochkova O.I., Shabanov G.A. [Session dynamic of bioelectrical activity of the brain during intellectual computer work] // Nat. Psychol. J. 2020. V. 13. № 1. P. 78.
  4. Seghier M., Price C. Interpreting and utilising intersubject variability in brain function // Trends Cogn. Sci. 2018. V. 22. № 6. P. 517.
  5. Lebedeva N.N., Karimova E.D. Stability of human ЭЭГ patterns in different tasks: The personality authentication problem // Neurosci. Behav. Physi. 2020. V. 50. № 7. P. 874.
  6. Haier R.J., Siegel B.V. Jr., MacLachlan A. et al. Regional glucose metabolic changes after learning a complex visuospatial/motor task: A positron emission tomographic study // Brain Res. 1992. V. 570. № 1–2. P. 134.
  7. Shestov A.A., Emir U.E., Kumar A. et al. Simultaneous measurement of glucose transport and utilization in the human brain // Am. J. Physiol. Endocrinol. Metab. 2011. V. 301. № 5. P. E1040.
  8. Peters R., White D., Cleeland C., Scholey A. Fuel for Thought? A Systematic review of neuroimaging studies into glucose enhancement of cognitive performance // Neuropsychol. Rev. 2020. V. 30. № 2. P. 234.
  9. Hosang Th., Laborde S., Low A. et al. How attention changes in response to carbohydrate mouth rinsing // Nutrients. 2023. V. 15. № 13. P. 3053.
  10. Liu J., Yamashiro K., Ikegaya Y. Glucose intake improves executive attention // Intern. J. Learn. Teach. 2022. V. 8. № 2. P. 136.
  11. Knott V., Messier C., Mahoney C., Gagnon M. Glucose and and glucoregulatory modulation of memory scanning, event-related potentials and EEG in elderly subjects // Neuropsychobiology. 2001. V. 44. № 3. P. 156.
  12. Messier C., Awad-Shimoon N., Gagnon M. et al. Glucose regulation is associated with cognitive performance in young nondiabetic adults // Behav. Brain Res. 2011. V. 222. № 1. P. 81.
  13. An Y.J., Jung Ki-Y., Kim S.M. et al. Effects of blood glucose levels on resting-state EEG and attention in healthy volunteers // J. Clin. Neurophysiol. 2015. V. 32. № 1. P. 51.
  14. Smith M.A., Riby L.M., Eekelen J.A.M. et al. Glucose enhancement of human memory: A comprehensive research review of the glucose memory facilitation effect // Neurosci. Biobehav. Rev. 2011. V. 35. № 3. P. 770.
  15. Ivanov V.A., Kruchinina O.V., Chiligina Y.A., Galpe-rina E.I. Selectivity for “Non-Food” versus “Food” nouns is increased in healthy adults in response to elevated peripheral blood glucose levels as indicated by event-related potentials (ERPs) // J. Evol. Bioch. Physiol. 2024. V. 60. № 6. P. 2369.
  16. Hoffman L.D., Polich J. EEG, ERPs and food consumption // Biol. Psychol. 1998. V. 48. № 2. P. 139.
  17. Dolgopolov I.S., Rykov M.Yu. [Personalized medicine: current trends and prospects] // Rus. Bull. Perinat. Ped. 2022. V. 67. № 4. P. 14.
  18. Gavron A.A., Araujo Y.I.D., Sharova E.V. et al. [Healthy subjects group and individual resting state networks FMRI-analysis] // Zh. Vyssh. Nerv. Deyat. Im. I.P. Pavlova. 2019. V. 69. № 2. P. 150.
  19. Kurgansky A.V., Lomakin D.I., Machinskay R.I. Resting-state networks in adolescents with poor behavior regulation. An analysis of effective cortical connectivity in EEG source space // Zh. Vyssh. Nerv. Deyat. Im. I.P. Pavlova. 2020. V. 70. № 6. P. 723.
  20. Babiloni C., Barry R.J., Başar E. et al. International Federation of Clinical Neurophysiology (IFCN) – EEG research workgroup: Recommendations on frequency and topographic analysis of resting state EEG rhythms. Part 1: Applications in clinical research studies // Clin. Neurophysiol. 2020. V. 131. № 1. P. 285.
  21. Walker Ch., Buse J. B., Frohlich F. Experimental increase of blood glucose alters resting state EEG measures of excitation–inhibition balance // Exp. Physiol. 2021. V. 106. № 4. P. 803.
  22. Mahjoory K., Nikulin V.V., Botrel L. et al. Consistency of EEG source localization and connectivity estimates // Neuroimage. 2017. V. 152. P. 590.
  23. Davoudi M., Pourshahbaz A., Dolatshahi B. et al. Network analysis for predicting treatment response in patients with obsessive-compulsive disorder // Iran J. Psychiatry Behav. Sci. 2023. V. 17. № 4. P. e137119.
  24. Lau Z., Pham T., Chen A., Makowski D. Brain entropy, fractal dimensions and predictability: A review of complexity measures for EEG in healthy and neuropsychiatric populations // Eur. J. Neurosci. 2022. V. 56. № 7. P. 5047.
  25. Wang Y., Li J., Zeng l. et al. Open eyes increase neural oscillation and enhance effective brain connectivity of the default mode network: Resting-state electroencephalogram research // Front. Neurosci. 2022. V. 16. P. 861247.
  26. Chen J.J., Herman P., Keilholz Sh., Thompson G.J. Editorial: Origins of the resting-state fMRI signal // Front. Neurosci. 2020. V. 14. P. 594990.
  27. Burroni J., Taylor P., Corey C. et al. Energetic constraints produce self-sustained oscillatory dynamics in neuronal networks // Front. Neurosci. 2017. V. 11. P. 80.
  28. Palombit A., Silvestri E., Volpi T. et al. Variability of regional glucose metabolism and the topology of functional networks in the human brain // NeuroImage. 2022. V. 257. P. 119280.
  29. Volpi T., Silvestri E., Aiello M. et al. The brain's "dark energy" puzzle: How strongly is glucose metabolism linked to resting-state brain activity? // J. Cereb. Blood Flow Metab. 2024. V. 44. № 8. P. 1433.
  30. Lum J.A.G., Byrne L.K., Barhoun P. et al. Resting state electroencephalography power correlates with individual differences in implicit sequence learning // Eur. J. Neurosci. 2023. V. 58. № 3. P. 2838.
  31. Tsitseroshin M.N., Galperina E.I. Correlative formation of functions as one of mechanisms of functional evolution (by example of development in child’s ontogenesis of central maintenance of stereognosis and speech function) // J. Evol. Biochem. Phys. 2012. V. 48. № 3. P. 355.
  32. Kruchinina O.V., Stankova E.P., Galperina E.I. Development of spatiotemporal EEG organization in males and females aged 8–30 years during comprehension of oral and written texts // Human Physiology. 2020. V. 46. № 3. P. 244.
  33. Trifonov M.I., Panasevich E.A. Prediction of successful cognitive activity based on the integrated characteristics of the EEG // Human Physiology. 2018. V. 44. № 2. P. 208.
  34. Rozhkov V.P., Trifonov M.I., Soroko S.I. Control the functional state of the brain based on the dynamics of integral parameters of multichannel EEG in human under acute hypoxia // Human Physiology. 2021. V. 47. № 1. P. 1.
  35. Livanov M.N. [Spatial organization of brain processes]. M.: Nauka, 1972. 181 p.
  36. Ukhtomsky A.A. [Collected works. V. 2. Parabiosis, physiological lability, assimilation of rhythm]. L.: LGU, 1951. 180 p.
  37. Doskin V.A., Lavrent’eva N.A., Miroshnikov M.P., Sharai V.B. [A test differential self-evaluation of one’s functional state] // Voprosy Psychol. 1973. V. 19. № 6. P. 141.
  38. Trifonov M.I. The structure function as new integral measure of spatial and temporal properties of multichannel EEG // Brain Inform. 2016. V. 3. № 4. P. 211.
  39. Rozhkov V.P., Trifonov M.I., Burykh E.A., Soroko S.I. [Estimation of individual human tolerance to acute hypoxia on the integral characteristics of the structure function of the multichannel EEG] // Ross. Physiol. J. im. I.M. Sechenova. 2019. V. 105. № 7. P. 832.
  40. Trifonov M.I., Panasevich E.A. Longitudinal Study of Intraindividual Variability in Integral Parameters of the Structure Function of Multichannel EEG // Human Physiology. 2022. V. 48. № 2. P. 134.
  41. Gal’perina E.I., Kruchinina O.V., Rozhkov V.P. [Common and individual in cortical spatial interactions during verbal-mnemonic activity in adolescents] // Sens. Syst. V. 28. № 3. P. 16.
  42. Shirer W.R., Ryali S., Rykhlevskaia E. et al. Decoding subject-driven cognitive states with whole-brain connectivity patterns // Cereb. Cortex. 2012. V. 22. № 1. P. 158.
  43. Opstal A.M., Hafkemeijer A., van den Berg-Huysmans A.A. et al. Brain activity and connectivity changes in response to glucose ingestion // Nutr. Neurosci. 2020. V. 23. № 2. P. 110.
  44. Almeneessier A.S., BaHammam A.A., Olaish A.H. et al. Effects of diurnal intermittent fasting on daytime sleepiness reflected by EEG absolute power // J. Clin. Neurophysiol. 2019. V. 36. № 3. P. 213.
  45. Parent M.B., Krebs-Kraft D.L., Ryana J.P. et al. Glucose administration enhances fMRI brain activation and connectivity related to episodic memory encoding for neutral and emotional stimuli // Neuropsychol. 2011. V. 49. № 5. P. 1052.
  46. Lord L.D., Expert P., Huckins J.F., Turkheimer F.E. Cerebral energy metabolism and the brain's functional network architecture: An integrative review // J. Cereb. Blood Flow Metab. 2013. V. 33. № 9. P. 1347.
  47. Betzel R.F., Fukushima M., He Y. et al. Dynamic fluctuations coincide with periods of high and low modularity in resting-state functional brain networks // Neuroimage. 2016. V. 127. P. 287.
  48. Yu Q., Erhardt E.B., Sui J. et al. Assessing dynamic brain graphs of time-varying connectivity in fMRI data: Application to healthy controls and patients with schizophrenia // Neuroimage. 2015. V. 107. P. 345.
  49. Garrett D.D., Kovacevic N., McIntosh A.R., Grady C.L. The importance of being variable // J. Neurosci. 2011. V. 31. № 12. P. 4496.
  50. Danko S.G. The reflection of different aspects of brain activation in the electroencephalogram: Quantitative electroencephalography of the states of rest with the eyes open and closed // Human Physiology. 2006. V. 32. № 4. P. 377.
  51. Mohamed Z., Halaby M.E., Said T. et al. Characterizing focused attention and working memory using EEG // Sensors. 2018. V. 18. № 11. P. 3743.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Examples of first-order structural functions (FOSF) of a multichannel electroencephalogram (EEG), calculated for a real EEG (A, a), an EEG with randomly mixed time samples (A, b), random signals simulating an EEG (A, c), and the amplitude spectrum of FOSF of a real EEG (B). Subject No. 2.

下载 (818KB)
3. Fig. 2. Changes in reaction time (ms, abscissa axis) and percentage of correct answers (%, ordinate axis) in subjects in the test of classifying nouns into "edible" (circles) and "inedible" (triangles) after glucose intake. Each point on the graph corresponds to one subject, the number is the subject's number. a - increase in the proportion of correct answers and decrease in reaction time; b - increase in the proportion of correct answers and increase in reaction time; c - decrease in the proportion of correct answers and decrease in reaction time; d - decrease in the proportion of correct answers and increase in reaction time.

下载 (1MB)
4. Fig. 3. Changes in pT and pS in the dynamics of successive epochs of electroencephalogram analysis throughout the study. Subject #20. Background_1 - Background_4 - resting state number. Each epoch of analysis is represented by one icon. Lines projected onto scattering clouds are a linear approximation of parameter changes in the dynamics of analysis epochs for each state. Gray icons indicate the state with eyes closed, white icons indicate the state with eyes open.

下载 (2MB)
5. Fig. 4. Number of subjects (the value is indicated inside the columns, n) with an increase (a), decrease (c), or no change (b) in the parameters pS and pT at successive stages of the study. A – resting state with eyes closed; B – with eyes open. Along the ordinate axis: relative number of subjects in each subgroup, in % (n = 24). Along the abscissa axis – numbers of the compared resting states: 2–1 – change in the ratio in the subgroups before and after the test; 3–2 – before and after glucose intake; 4–3 – complex effect of the test and glucose. * – differences in the number (in proportions) of subjects with an increase or decrease in the value of the integral parameter are significant, * – p < 0.05, ** – p < 0.01.

下载 (3MB)
6. Fig. 5. Correlation coefficients between the glucose level (on an empty stomach – A, after glucose intake – B) and the values of the integral parameters pT and pS. Along the ordinate axis: r – values of the correlation coefficients in relative units, along the abscissa axis: Background_1, …, Background_4 – states of rest in sequence during the study. Triangles – r values for the pT parameter, circles – r values for the pS parameter, light figures – the state of rest with open eyes (OE), dark figures – the state of rest with closed eyes (CE). * – p < 0.05.

下载 (1MB)
7. Fig. 6. Correlation coefficients (n = 24) between the values of integral parameters (pT, pS) and the test performance indicators on an empty stomach (A) and after glucose intake (B). On the ordinate axis: r – correlation coefficient, relative units, on the abscissa axis: stimulus categories I – “edible”, II – “inedible”, RT – reaction time, RC – rest with eyes closed, OG – rest with eyes open, 1–4 – rest states in order. * – p < 0.05.

下载 (1MB)

版权所有 © Russian Academy of Sciences, 2025